Document details

l of l ∋ Export ⊥ Download More... >

Polymer - Plastics Technology and Engineering Volume 56, Issue 2, 22 January 2017, Pages 216-226

Co-PP/EPDM Blend Optimization Using D-Optimal Design for Medical Applications (Article)

Balaji, A.B., Khalid, M., Ratnam, C.T., Michael, F.M., Walvekar, R. ද

^aDepartment of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia ^bRadiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Selangor, Malaysia

^cEnergy Research Division, Taylor's University, Subang Jaya, Selangor, Malaysia

Abstract

This work focuses on the optimization and identification of blend with balanced mechanical properties of Co-PP/EPDM. The blending factors include time, temperature, screw speed, and blend ratio. Tensile strength and elongation at break were studied as the two responses. D-Optimal model was used to fit the regression line, which was validated using analysis of variance and "lack of fit" test. An average error of 10% (for tensile strength) and 3.2% (for elongation at break) was observed between the actual and predicted values. Further, the thermal stability, dynamic mechanical analysis, and phase morphology of the optimized blend were also investigated. © 2017 Taylor & Francis.

Author keywords

Co-PP D-optimal EPDM mechanical properties optimization

Indexed keywords

Engineering controlled terms:	Blending Mechanic	cal properties Medical applicati	ions Optimization	Tensile strength	
Compendex keywords	U	optimal D-optimal designs	Elongation at break	EPDM Phase morph	ology
Engineering main heading:	Dynamic mechanical analysis				
ISSN: 03602559 Source Type: Journal Original language: English		DOI: 10.1080/0360255 Document Type: Article Publisher: Taylor and F	e		

Khalid, M.; Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham
Malaysia Campus, Semenyih, Selangor, Malaysia;
Conversite the 2017, Elsevier, B.V., All violate reconverses

© Copyright 2017 Elsevier B.V., All rights reserved.

Cited by 0 documents

Inform me when this document is cited in Scopus:

Set citation alert > Set citation feed >

Related documents

Find more related documents in Scopus based on:

Authors > Keywords >

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

日本語に切り替える
切換到简体中文
切換到繁體中文
Русский язык

Help

Contact us

ELSEVIER

Terms and conditions Privacy policy

Copyright © 2017 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V. Cookies are set by this site. To decline them or learn more, visit our Cookies page.

RELX Group[™]