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ABSTRACT

Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcriptional factor that maintains 
intracellular redox equilibrium, modulates the expression of antioxidant genes, scavenger 
receptors, and cholesterol efflux transporters, all of which contribute significantly to foam 
cell development and plaque formation. Nrf2 has recently emerged as a key regulator that 
connects autophagy and vascular senescence in atherosclerosis. Autophagy, a cellular 
mechanism involved in the breakdown and recycling of damaged proteins and organelles, 
and cellular senescence, a state of irreversible growth arrest, are both processes implicated 
in the pathogenesis of atherosclerosis. The intricate interplay of these processes has 
received increasing attention, shedding light on their cumulative role in driving the 
development of atherosclerosis. Recent studies have revealed that Nrf2 plays a critical role 
in mediating autophagy and senescence in atherosclerosis progression. Nrf2 activation 
promotes autophagy, which increases lipid clearance and prevents the development of 
foam cells. Meanwhile, the activation of Nrf2 also inhibits cellular senescence by regulating 
the expression of senescence markers to preserve cellular homeostasis and function and 
delay the progression of atherosclerosis. This review provides an overview of the molecular 
mechanisms through which Nrf2 connects cellular autophagy and vascular senescence 
in atherosclerosis. Understanding these mechanisms can provide insights into potential 
therapeutic strategies targeting Nrf2 to modulate cellular autophagy and vascular senescence, 
thereby preventing the progression of atherosclerosis.
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INTRODUCTION

Atherosclerosis is the leading cause of death worldwide.1 It is a chronic inflammatory disease 
characterized by the buildup of lipid plaque, which subsequently leads to the thickening and 
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narrowing of the artery and in turn increases the risk of severe cardiovascular events such as 
heart attacks or strokes.2 Atherosclerosis begins with endothelial dysfunction, which increases 
the expression of adhesion molecules, facilitating monocyte recruitment and foam cell 
formation, resulting in the development of fatty streaks. This process is accompanied by an 
increase in the production of inflammatory cytokines and growth factors, which promote the 
proliferation and migration of smooth muscle cells into the intima layer, further exacerbating 
the thickening of arterial walls and ultimately the progression of atherosclerotic plaques.3,4

Excessive generation of reactive oxygen species (ROS) can lead to the formation of oxidized 
low-density lipoprotein (oxLDL) species, thereby inducing oxidative stress within cells. This 
oxidative stress has the potential to trigger cell death and contribute to the progression of 
cardiovascular diseases.5 The transcription factor nuclear factor erythroid 2-related factor 
2 (Nrf2) plays a crucial role as a regulator of cellular defense against oxidative stress and 
inflammation, both of which are major factors in the development of atherosclerosis.6 Nrf2 
activation leads to the transcription of genes encoding for various antioxidant enzymes 
and cytoprotective proteins, such as heme oxygenase-1 (HO-1), NAD(P)H: quinone 
oxidoreductase-1 (NQO1) and glutathione peroxidase 1.7,8 However, Nrf2 has been found 
to exhibit both pro- and anti-atherogenic effects by regulating lipid metabolism, foam cell 
formation, and the expression of antioxidant proteins and inflammatory markers.4,9 The 
actual role of Nrf2 in atherosclerosis progression remains a matter of debate.

Recently, cellular senescence and autophagy-lysosomal pathways have emerged as important 
mechanisms in the pathogenesis of atherosclerosis. Cellular senescence is a state of 
irreversible growth arrest characterized by the increased expression of senescence-associated 
proteins (e.g., p16 and p21), senescence-associated β-galactosidase (SA-β-gal) activity, and 
levels of adhesion molecules (e.g., intercellular adhesion molecule-1 [ICAM-1], and vascular 
cell adhesion molecule 1 [VCAM-1]) and proinflammatory cytokines (e.g., interleukin 6 
[IL-6] and interleukin 8 [IL-8]).10,11 Senescence in endothelial cells, smooth muscle cells, and 
macrophages is associated with various detrimental effects, including vascular dysfunction, 
foam cell formation, the and upregulation of inflammatory factors, which collectively 
create a pro-atherosclerotic environment that accelerates the progression of this disease.10 
In contrast, autophagy, a cellular process responsible for maintaining cellular homeostasis 
and plaque stability, is involved in the accumulation of oxidized lipids, inflammation, and 
the formation of foam cells, which have been implicated in atherosclerosis.12,13 Furthermore, 
the transcription factor Nrf2 has emerged as playing a major role in the complex interplay 
of cellular activities. Nrf2 has been shown to be involved in regulating autophagy activity 
by promoting autophagy efflux and is also closely associated with the Keap1/p62 pathway, 
which mediates proteasomal activity. Induction of Nrf2 has been shown to enhance the 
expression of autophagy-related genes (e.g., BECN1, p62, ATG5, and ATG7) and autophagic 
flux, upregulate p62, and decrease Keap1 levels, which attenuate macrophage infiltration, 
intracellular lipid content, and foam cell formation, as well as protecting against oxidative 
damage in vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs).14-16 
Nrf2 has also been implicated in cellular senescence in atherosclerosis. Nrf2 signaling reduces 
the effects of senescence by reducing the expression of senescence-related markers (e.g., 
p21, p16, and β-gal staining), mediating antioxidant gene expression (e.g., HO-1, GST, and 
NQO1) and thereby decreasing oxidative stress,17-19 and modulating inflammatory cytokines 
(e.g., IL-6, IL-8, and tumor necrosis factor alpha [TNF-α]) to reduce the inflammatory 
response20,21 and regulate adhesion molecule expression (ICAM-1, VCAM-1 and E-selectin),22,23 
all of which are associated with monocyte recruitment, endothelial dysfunction, disrupted 
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vascular homeostasis, and foam cell formation. Taken together, the recent literature has 
highlighted the potential involvement of Nrf2 in bridging autophagy with senescence in 
atherosclerosis. The activation of Nrf2 inhibits cellular senescence, while promoting the 
induction of autophagy, thereby protecting against oxidative stress, alleviating inflammation, 
and regulating vascular function during atherosclerosis progression. This review emphasizes 
the role of Nrf2 in connecting cellular senescence and autophagy, focusing on the interplay 
between autophagy and vascular senescence in atherosclerosis, and providing insights into 
the molecular mechanisms of Nrf2 in these processes. The involvement of Nrf2 in these 
processes highlights its potential role in modulating the development of atherosclerosis.

INTERPLAY BETWEEN AUTOPHAGY AND VASCULAR 
SENESCENCE IN ATHEROSCLEROSIS
Atherosclerosis is initiated by oxidative stress, which leads to the upregulation of 
proinflammatory cytokines and adhesion molecules that contribute to endothelial 
dysfunction, foam cell formation, and plaque development.24 Autophagy plays an important 
role in atherosclerotic plaque development and stability, which may either exert protective 
or detrimental effects. The activation of autophagy in atherosclerotic sites may occur due 
to increased ROS production or metabolic stress.25 Multiple studies have demonstrated the 
protective effects of maintaining basal autophagy in atherosclerosis, including inhibiting 
oxidative stress, preventing excessive lipid accumulation within cells, and delaying the 
formation of atherosclerotic plaques.26,27

Immuno-senescence or inflammaging is associated with impaired autophagy in various 
immune cells within atherosclerotic lesions.28 It has been observed that VSMC senescence 
contributes to the destabilization of atherosclerotic plaque due to lower collagen production 
and increased secretion of extracellular matrix-degrading proteases, which leads to fibrous 
cap thinning, necrotic core formation, and calcification.29 Senescent VSMCs are characterized 
by changes in phenotype from contractile to synthetic forms, altered replicative potential, 
and reduced responsiveness to mediators involved in contraction and relaxation.30 It also 
promotes the senescence-associated secretory phenotype (SASP) factor secretion, which 
stimulates the release of cytokines and adhesion molecules.31 Autophagy has been found to 
regulate the phenotype and proliferation capacity of VSMCs, which in turn, plays a role in 
controlling vascular function and the initiation of vascular diseases.32 Studies have shown 
that the induction of autophagy can regulate contractile capacity and protect VSMCs from 
calcification by regulating Ca2+ release and influx, as well as the expression of transforming 
growth factor (TGF)-β1, which modulates cellular osteogenic differentiation.33,34 The 
blockage of autophagy by the genetic disruption of essential autophagy proteins (ATG7), as 
well as autophagy inhibitors (e.g., 3-methyladenine and bafilomycin A1), has been linked 
to positive staining for SA-β-gal and expression of senescence markers p52, p16 and p21, 
suggesting that autophagy dysregulation promotes atherosclerotic lesions and exacerbate 
senescence in VSMCs.19,35,36 Conversely, the stimulation of autophagy has been found to 
attenuate oxLDL-induced VSMC senescence by regulating the autophagy-related proteins 
mammalian target of rapamycin (mTOR)C1, ULK1, and ATG13 and promoting plaque 
stability.35 Similarly, the activation of mTOR pathway in VSMCs in the thoracic aorta could 
inhibit autophagy and induce VSMC senescence with the expression of p53, p21, and p16.37 
These studies have demonstrated that autophagy induction could alleviate atherosclerosis 
progression by inhibiting VSMC senescence and stabilizing atherosclerotic plaques.
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Numerous studies have also linked the mechanism of autophagy to endothelial cell 
homeostasis and function. The basal autophagy process is responsible for degrading toxic 
ROS. However, under stressful conditions, deregulated autophagy may have negative effects 
on endothelial cell function and contribute to autophagic cell death.38 Studies have shown 
that the inhibition of autophagy with bafilomycin or knockdown of autophagy genes (e.g., 
ATG3 and ATG7) suppressed the phosphorylation of endothelial NO synthase (eNOS), 
reduced nitric oxide (NO) production, and altered vascular permeability.39-42 Autophagy has 
also been found to regulate the inflammatory response in endothelial cells.43,44 Deficiency 
in endothelial autophagy showed increased TNF-α–induced inflammation and expression 
of the senescence marker p16 under high-shear stress (SS) conditions, indicating that the 
activation of endothelial autophagy by high SS protects against atherosclerotic plaques by 
preventing senescence and inflammation.45,46 Endothelial autophagy was found to reduce 
lipid accumulation in the vessel wall, indicating that lipophagy may be an important 
mechanism for preventing foam cell formation.47,48 The impairment of autophagy flux by 
high concentrations of glucose, palmitic acid, or H2O2 increases endothelial cell apoptosis 
and inflammation, which can be attenuated by regulating the AMPK pathway, which induces 
autophagy and thereby alleviates the progression of atherosclerosis.49-51 Furthermore, 
the induction of autophagy by rapamycin can prevent the elevation of expression of p21, 
VCAM-1, ICAM-1, and the DNA damage marker γ-H2AX and modulate the production of the 
vasodilation molecule NO, suggesting that autophagy modulates endothelial senescence and 
senescence-associated endothelial dysfunction.52

Meanwhile, senescent macrophages have been discovered to influence atherosclerosis 
progression by promoting inflammation and impairing cholesterol efflux.53,54 The activation 
of autophagy in macrophages plays an important protective role in atherosclerosis. Autophagy 
can promote macrophage survival by decreasing macrophage foam cell formation by 
promoting the hydrolysis of lipid droplets and cholesterol efflux.47 The activation of autophagy 
has also been shown to increase the expression of cholesterol transport receptors (ATP-
binding membrane cassette transporter; ABCA1 and ABCG1), promote cholesterol efflux, 
and decrease total cholesterol levels in oxLDL-treated macrophages.55,56 The promotion of 
autophagy by quercetin has been found to decrease lipid accumulation, the number of cells 
staining positive for SA-β-gal, and the expression of p16 and p21 proteins, while the inhibition 
of autophagy induces opposing effects.57 The inhibition of autophagy in macrophages was 
found to lead to the accumulation of p62, which upregulates the activity of mTOR, decreases 
intracellular cholesterol efflux (mediated by ABCA1 and ABCG1), and accelerates foam cell 
formation.56 Studies using in vivo atherosclerotic models showed that treatment with an 
autophagy inhibitor increased aortic plaques, attenuated lipid accumulation, and increased 
the expression of p53 and p21, while decreasing the LC3 II/I ratio.58 The findings suggest that 
autophagy plays an important role in regulating macrophage function in foam cell formation, 
which influences the progression of atherosclerosis. Overall, these studies have demonstrated 
that autophagy induction alleviates atherosclerosis progression by inhibiting VEC and VSMC 
senescence and stabilizing advanced atherosclerotic plaques.

NRF2 SIGNALING, OXIDATIVE STRESS, AND 
ATHEROSCLEROSIS
Oxidative stress mediated by ROS plays a significant role in the initiation and development of 
atherosclerosis. Numerous studies have demonstrated that atherosclerotic risk factors such 
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as hypertension, diabetes, or dyslipidemia are associated with increased ROS production.59 
The imbalance of antioxidant and oxidant systems can lead to an elevation in ROS levels, 
which further accelerates the advancement of atherosclerosis.60 Excessive ROS production 
in the vascular wall causes a decrease in NO bioavailability triggered by eNOS uncoupling, 
interfering with endothelial permeability by promoting the adhesion of monocytes and 
leading to endothelial dysfunction.61 ROS cause the oxidation of low-density lipoproteins 
and induce foam cell formation and the inflammatory response, thereby further promoting 
atherogenesis.62–64 Therefore, neutralizing oxidative stress in cells may provide a solution 
to atherosclerosis progression. In this context, the transcriptional factor Nrf2 is of interest, 
since it has been recognized for its role in regulating antioxidant defenses and cellular redox 
reactions, playing a main role in eliminating oxidative stress.

Nrf2 activates antioxidant response element (ARE)-dependent genes, which regulate the 
production of proteins involved in the detoxification and removal of ROS and electrophiles. 
It can also regulate mitochondrial ROS production by controlling substrate availability 
for mitochondrial respiration and the efficiency of mitochondrial fatty acid oxidation.65 
Under normal conditions, Nrf2 is associated with the Keap1 protein and undergoes 
polyubiquitination for proteasomal degradation.66 In contrast, under unfavorable conditions 
such as oxidative stress, metabolic stress, and oncogenic stress, Nrf2 dissociates from Keap1, 
translocates, and accumulates in the nucleus. It then binds with the small Maf protein and 
interacts with the ARE in the nucleus. The interaction of ARE with Nrf2 transcriptionally 
regulates its target gene, which then activates the expression of several antioxidant enzymes 
that protect cells from oxidative stress, such as glutathione (GSH) and superoxide dismutase 
1, and carry out drug detoxification, such as glutathione S-transferase (GST) and NQO1.

It has been found that Nrf2 regulates multiple pathways in atherosclerosis development. Nrf2 
regulates macrophage foam cell formation and oxidative stress redox reactions by modulating 
the expression of antioxidant genes, scavenger receptors, and cholesterol efflux transporters, 
thereby exerting protective effects against atherosclerosis development (Fig. 1).62,67-70 Nrf2 
signaling was shown to play a role in macrophage lipid uptake by regulating CD36 
scavenger receptors.71-73 In addition, Nrf2 was found to upregulate HO-1 and peroxiredoxin 
1 expression, increase ABCA1 levels, and decrease LOX-1 levels, suggesting that Nrf2 can 
alleviate oxidative stress and inhibit macrophage-derived foam cell formation by increasing 
cholesterol efflux and decreasing lipid intake.74,75 It has also been shown that Nrf2 regulates 
monocyte recruitment and the inflammatory response by modulating the expression 
of proinflammatory cytokines (IL-6 and IL-1β) and adhesion molecules (e.g., monocyte 
chemoattractant protein-1 [MCP-1]) that play critical roles in driving atherosclerotic plaque 
formation.9,76,77 Studies have also shown that Nrf2 can protect VECs by reducing lipid 
peroxidation and increasing antioxidant enzyme activity in Ldlr–/– mice fed with a high-
fat diet.78 Surprisingly, it was found that Nrf2 deficiency in the aorta and VSMCs in an 
atherosclerosis model reduced LOX-1 expression and the uptake of oxLDL, which further 
attenuated the atherosclerotic plaque burden, reduced VSMC migration and proliferation, 
and inhibited oxidative stress.79 A study also found that Nrf2 functions as a novel positive 
regulator of the inflammasome, as its signaling exacerbated atherosclerosis by increasing 
IL-1 production triggered by cholesterol crystals.80 The deficiency of Nrf2 in macrophages 
was found to contribute to foam cell formation by increased lipid uptake and decreased 
cholesterol efflux and promote a proinflammatory phenotype with elevated expression levels 
of MCP-1, IL-6, and TNF-α.9
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MOLECULAR MECHANISMS OF NRF2 IN MEDIATING 
AUTOPHAGY AND VASCULAR SENESCENCE
Recent studies have demonstrated that Nrf2 plays a crucial role in modulating the balance 
between autophagy and senescence in atherosclerosis. The activation of Nrf2 induces 
antioxidant gene expression, which protects against oxidative stress that can trigger 
endothelial dysfunction, smooth muscle cell proliferation, and macrophage activation, all 
of which are critical events in atherosclerosis development.14,16,81 Nrf2 activation has been 
shown to reduce the senescence effect and suppress senescence-associated inflammation 
by inhibiting the secretion of proinflammatory cytokines and matrix metalloproteinases 
(MMPs).82-84 It is also involved in the regulation of adhesion factors and efflux transporters, 
which modulate monocyte recruitment and cholesterol efflux. Furthermore, the activation 
of Nrf2 can increase autophagic flux, which promotes the removal of oxidized lipids such as 
oxLDL and prevents the formation of foam cells.14,19,85,86 The molecular mechanisms by which 
Nrf2 mediates autophagy and vascular senescence in atherosclerosis are summarized in Table 1. 
Overall, the activation of Nrf2 can increase autophagy and reduce cellular senescence, thereby 
reducing inflammation and promoting cellular homeostasis within the arterial wall, which 
influences the development and progression of atherosclerosis.

In an in vitro atherosclerosis model induced by ox-LDL, the activation of Nrf2 was found to 
be associated with increased autophagy.85 This was accompanied by decreased levels of SASP 
markers (TNF-α, IL-6, and IL-1β), adhesion factors (ICAM-1 and VCAM-1), and cholesterol 
efflux regulatory proteins (ABCA1, ABCG1, and SR-BI). Similarly, the activation of Nrf2 by 
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Fig. 1. Role of Nrf2 in regulating the autophagy and senescence pathways that promote foam cell development. In response to oxidative stress, Nrf2 mediates the 
expression of antioxidative genes (HO-1, NQO1, PRDX1, GSH, and GST). The activation of Nrf2 has been linked to the upregulation of autophagy genes (including 
p62), and it is associated with the inhibition of expression of senescence markers, such as p16, p21, IL-1β, TNF-α, MCP-1, IL-6, and β-gal activity. The interplay 
between autophagy activation and senescence inhibition has been implicated in the processes driving cholesterol efflux and lipid accumulation during the 
development of foam cells. The diagram was constructed using BioRender.com. 
GSH, glutathione; GST, glutathione S-transferase; HO-1, heme oxygenase-1; IL-1β, interleukin-1β; IL-6, interleukin 6; NQO1, NAD(P)H quinone oxidoreductase-1; 
MCP-1, monocyte chemoattractant protein-1; Nrf2, nuclear factor erythroid 2-related factor 2; Prdx1, peroxiredoxin 1; TNF-α, tumor necrosis factor alpha.



different stimuli, such as ammonium tetrathiomolybdate and copper oxide nanoparticles, 
has been shown to protect against oxidative stress-induced endothelial cell death.16,81 Nrf2 
activation resulted in the upregulation of antioxidative genes and triggered autophagy flux, 
as evidenced by increased levels of LC3B-II, SQSTM1, and autophagosome formation. The 
disruption of autophagy genes, including ATG5 and SQSTM1, has been shown to suppress 
Nrf2 and inhibit the transcription of antioxidant genes, which promote oxidative stress and 
cell death.16 Furthermore, it has been shown that autophagy plays a crucial role in stabilizing 
Nrf2 and its downstream genes by inhibiting the ubiquitin–proteasome machinery, 
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Table 1. Molecular mechanisms of Nrf2 in mediating autophagy and vascular senescence
Atherosclerosis model Nrf2 mechanism Senescence marker Autophagy marker Reference
HUVECs and human acute 
monocytic leukemia cells (THP-
1 macrophages) incubated with 
oxLDL

Treatment with KLF2 activates Nrf2 and 
promotes autophagy, increases cell viability, 
and reduces inflammation, adhesion factors, 
and foam cell formation.

• �↓ TNF-α, IL-1β, and IL-6 
expression

• ↑ LC3II/LC3I and Beclin1 85

• �↓ ICAM-1, VCAM-1, and 
E-selectin

• ↓ p62

• ↑ ABCA1, ABCG1, and SR-BI
NaAsO2-induced oxidative stress 
in HUVECs

TTM treatment activates Nrf2 and its target 
genes (HMOX1 and GCLM), protecting against 
oxidative stress and promoting autophagy.

• �↓ Cell death (↓ PARP, ↓ 
γH2AX)

• �↑ Protein levels of LC3B-II and 
SQSTM1

16

• �Autophagy inhibition suppresses 
Nrf2 activation

CuONP-induced oxidative stress 
in a mouse model and HUVECs

Nrf2 pathway activation by CuONPs increases 
HMOX1 and GCLM, providing protection against 
oxidative stress and cell death, while the 
Nrf2 signaling pathway is also modulated by 
autophagy.

• �Nrf2 knockout: ↑ γH2AX 
and ↑ superoxide anions 
accumulation

• �Atg5-KO or autophagy inhibition by 
an inhibitor (3-MA, Wort, and CQ) ↓ 
Nrf2 and HMOX1 expression

81

THP-1 macrophages incubated 
with oxLDL

Nrf2 activation by tBHQ treatment in 
autophagy-blocked macrophages upregulates 
HO-1, further aggravating autophagy blockage 
and increasing inflammation

• ↑ IL-1β and IL-18 • �↑ Expression levels of LC3II/I and 
p62

82

Streptozotocin-induced 
diabetes in apolipoprotein 
E-deficient mice

In vivo: Treatment of mice with tBHQ induces 
Nrf2 expression, leading to reduced size 
and lipid content of atherosclerotic lesions, 
decreased inflammation, and increased 
autophagic flux.

• �↓ Chemokine (CCL2 and 
CCL5) expression

• �↑ Expression levels of BECN1, 
SQSTM1/p62 proteins and 
conversion of MAP1LC3B-I to 
MAP1LC3B-II

14

In vitro: Nrf2 activation by tBHQ-induced 
antioxidant genes (HMOX1, SOD1, and CAT), 
suppresses cytokine-induced expression of 
pro-inflammatory and oxidative stress genes 
and promotes autophagic activity

ATP-stimulated NLRP3 
inflammasome activation in 
THP-1 macrophages

Treatment with rapamycin induces autophagy, 
activates Nrf2 and NQO1, and reduces 
inflammation

• �↓ IL-1β secretion and 
caspase-1 cleavage, IL-6, 
IL-8, MCP-1 and IκBα 
transcript

• ↓ p62/SQSTM1 protein 84
• �↑ The levels of LC3-II, beclin 1, and 

ATG5

Stress-induced premature 
senescence in mouse embryonic 
fibroblasts and replicative 
senescence in WI38 human cells

Activating Nrf2 with rapamycin increases the 
expression of target genes (GST and NQO1), 
inhibits cellular senescence, and induces 
autophagy

• ↓ β-gal activity • ↓ Levels of p62 83
• �↓ levels of p16 and p21 

molecular markers
• ↑ LC3B-I to LC3B-II interconversion

Deletion of the autophagy gene 
Atg7 in murine VSMCs (atg7−/− 
VSMCs)

Defective autophagy activates the Nrf2 
signaling pathway, leading to the upregulation 
of antioxidative enzymes (GST and NQO1), the 
induction of senescence, and the promotion of 
neointima formation.

• �G1-cell cycle arrest (atg7−/− 
nuclei in G1-phase ↑, in 
G2/M-phase ↓)

• ↑ SQSTM1 19

• ↑ SA-β-gal activity • ↓ LC3B-II levels
• �↑ collagen deposition and 

migration (MMP-9, TGFB, 
and CXCL12)

Nrf2, nuclear factor, erythroid 2-like 2; HUVEC, human umbilical vein endothelial cells; KLF2, Krüppel like transcription factor 2; TNF-α, tumor necrosis Factor 
alpha; IL-1β, interleukin 1 beta; IL-6, interleukin 6; ICAM-1, intercellular adhesion molecule 1; VCAM-1, vascular cell adhesion protein 1; ABCA1, ATP binding 
cassette subfamily A member 1; ABCG1, ATP binding cassette subfamily G member 1; SR-BI, scavenger receptor class B type I; MAP1LC3B, microtubule-
associated protein 1 light chain 3 beta; TTM, ammonium tetrathiomolybdate; HMOX1/HO-1, heme oxygenase 1; GCLM, glutamate-cysteine ligase; PARP, 
poly(ADP-ribose) polymerase; γH2AX, phosphorylated histone H2AX; SQSTM1, sequestosome 1; CuONP, copper oxide nanoparticle; 3-MA, 3-methyladenine; 
Wort, wortmannin; CQ, chloroquine; oxLDL, oxidized low-density lipoprotein; tBHQ, tertiary butylhydroquinone; IL-18; interleukin 18; SOD1, superoxide 
dismutase; CAT, catalase; CCL5, C-C motif chemokine ligand 5; BECN1, beclin-1; ATP, adenosine triphosphate; NQO1, NAD(P)H quinone oxidoreductase; IL-8, 
interleukin 8; MCP-1/CCL2, monocyte chemoattractant protein-1; ATG5, autophagy-related 5; GST, glutathione S-transferase; SA-β-gal, senescence-associated 
β-galactosidase; ATG7, autophagy-related 7; MMP-9, matrix metalloproteinase 9; TGFB, transforming growth factor beta; CXCL12, CXC motif chemokine 12.



preventing the proteasome-dependent degradation of Nrf2 and resulting in the activation 
of Nrf2 antioxidant pathways. Conversely, autophagy inhibition promotes the proteasome-
dependent degradation of Nrf2, activating the Nrf2 antioxidant pathway and exacerbating 
vascular injury, as shown by upregulated inflammatory factor expression. These findings 
emphasize the interconnected roles of Nrf2 and autophagy in vascular health.81

In a diabetes-driven atherosclerosis model, tBHQ-induced Nrf2 activation in macrophages 
showed an atheroprotective effect by reducing the size and lipid content of atherosclerotic 
lesions while decreasing inflammation and oxidative stress.14 This is correlated with upregulated 
expression of autophagy-related markers and enhanced autophagic flux. Meanwhile, Nrf2 
activation by tBHQ in an in vitro model was also found to suppress the cytokine-induced 
expression of proinflammatory and oxidative stress genes and promoted autophagic activity, 
highlighting Nrf2 activation as a potential atheroprotective approach against inflammation 
and oxidative stress, while restoring autophagy.14 Studies have also explored the effect of 
rapamycin-induced autophagy induction, which suppressed inflammation in macrophages, as 
demonstrated by the reduced production of MCP-1, IL-6, IL-1β, and IL-18. This also involved the 
activation of Nrf2 through upregulation of p62/SQSTM1, which contributed to the reduction 
of oxidative stress.84 Moreover, the activation of Nrf2 by rapamycin was also found to delay cell 
senescence, as evidenced by decreased β-gal activity and lower levels of the molecular markers 
p16 and p21. This effect appears to be related to the activation of autophagy, as suggested by 
decreased levels of p62 and increased conversion of LC3B-I to LC3B-II.83 The dual effect of 
reducing oxidative stress and decreasing senescence and inflammatory markers highlights the 
complex interplay between autophagy, Nrf2, and cellular senescence.

In contrast, defective autophagy resulting from deletion of the autophagy gene Atg7 has been 
found to lead to the accumulation of p62 and accelerate the development of stress-induced 
premature senescence, characterized by increased CDKN2A-RB-mediated G1-cell cycle 
arrest, and SA-β-gal activity.19 This is also associated with increased Nrf2 activation, resulting 
in resistance to oxidative stress-induced cell death. Impaired autophagy is associated with 
increased expression of SASP markers (MMP9, TGFB, and CXCL12) and CDKN2A, promoting 
postinjury neointima formation and atherogenesis in murine VSMCs with tissue-specific 
deletion of the essential autophagy gene Atg7 (Atg7−/− VSMCs). Furthermore, the inhibition 
of autophagy by chloroquine in ox-LDL-treated macrophages not only reduced cell viability 
but also triggered inflammation, increasing the expression levels of LC3II/I and Nrf2, which 
was likely to have been achieved through the accumulation of p62.82 Thus, these studies 
collectively highlight the complex interconnections between Nrf2, autophagy, and cellular 
senescence, and their impact on atherosclerosis.

THERAPEUTIC STRATEGIES TARGETING CELLULAR 
AUTOPHAGY AND VASCULAR SENESCENCE 
IN THE DEVELOPMENT OF CARDIOVASCULAR 
ATHEROSCLEROSIS

Cellular autophagy and vascular senescence are two critical pathophysiological processes that 
play a vital role in the development and progression of atherosclerosis. Therefore, therapeutic 
strategies targeting cellular autophagy and vascular senescence may have a significant impact 
on atherosclerosis prevention and treatment.
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Several pharmacological agents have been shown to regulate autophagy and vascular 
senescence and attenuate atherosclerosis progression. Resveratrol, a polyphenolic compound 
found in grapes and red wine, has been shown to decrease the formation of atherosclerotic 
plaques, lipid accumulation, and levels of inflammatory cytokines through decreased PI3K/
AKT/mTOR signaling.87 It was also found to inhibit ICAM-1 expression via transcriptional 
regulation of the FERM-kinase and Nrf2/ARE interaction, thereby blocking monocyte 
adhesion and thus yielding an anti-atherogenic effect.88 Studies also found that resveratrol 
exerts its antioxidative vascular protective effects by increasing Nrf2 expression, which affects 
γ-glutamylcysteine synthetase, HO-1, and NQO-1 in arterial coronary endothelial cells.89 
Resveratrol has also been linked to SIRT1 expression, which exerts anti-inflammatory and 
antioxidative stress activities and suppresses TNF-α-triggered ROS generation.90

Additionally, rapamycin, an mTOR inhibitor that is known to induce autophagy, has been 
studied regarding its ability to regulate the stabilization of atherosclerotic plaques.91 It 
was found to inhibit cell senescence, as demonstrated by decreased SA-β-gal activity and 
the downregulation of senescence-associated molecular markers such as SASP, p16, and 
p21, which are correlated with increased levels of Nrf2 and the activation of autophagy.83 
Treatment with rapamycin was found to activate autophagy and suppress the production of 
SASP factors, as well as reducing the number of SA-β-gal-positive senescent cells.92 Another 
study also found that the activation of the mTOR pathway in VSMCs led to reduced levels 
of signal-associated autophagy proteins (LC3II and beclin-1), and the inhibition of mTOR 
pathway resulted in a reduced number of SA-β-gal-stained cells and regulated the expression 
of senescence markers (p53/p21/p16).37

Several natural compounds, including sulforaphane and curcumin, have demonstrated 
their potential to attenuate the progression of atherosclerosis in animal models. Notably, 
sulforaphane was found to have the ability to slow the advancement of atherosclerotic lesions 
induced by a high-fat diet, as well as to mitigate vascular dysfunction. This effect is likely 
attributed to its ability to lower cholesterol levels, reduce vascular oxidation (via increasing 
vascular GSH and preventing lipid peroxidation), and suppress inflammation mediated by 
nuclear factor-κB (NF-κB).93 Similarly, curcumin appears to exert its effects by modulating 
lipid metabolism, macrophage infiltration, and inflammation through the suppression of 
molecules such as CD36, VCAM-1, ICAM, NF-κB, IL-1β, and TNF-α.55,94 These findings show 
the protective potential of natural compounds against atherosclerosis, particularly through 
antioxidant and anti-inflammatory properties.

CONCLUSION

In summary, Nrf2 plays a critical role in regulating both autophagy and vascular senescence, 
which are key processes involved in the development and progression of atherosclerosis. 
Overall, these findings suggest that Nrf2 could be a promising target for the development of 
therapeutic strategies aimed at combatting atherosclerosis and other age-related diseases. 
The molecular mechanisms by which Nrf2 regulates these processes are complicated and 
involve multiple signaling pathways, emphasizing the need for further in-depth research 
to unravel the precise signaling pathways and molecular interactions to facilitate the 
development of more targeted and effective interventions. Further studies are also needed 
to explore the potential side effects of Nrf2 activation in various tissues and cell types. In 
conclusion, our review underscores the significance of Nrf2 in the context of autophagy 
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and vascular senescence in atherosclerosis development. Further investigation of this 
intricate interplay and its therapeutic potential promises to strengthen our ability to prevent 
atherosclerosis, ultimately alleviating the burden of cardiovascular disease.
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