AROMATIC HERBS IN FOOD
Contents

Contributors ix
Preface xi

1. Introduction to nutraceuticals, medicinal foods, and herbs 1
 Tugba Ozdal, Merve Tomas, Gamze Toydemir, Senem Kamiloglu, Esra Capanoglu

1.1 Introduction to nutraceuticals 1
 1.1.1 Nutraceuticals in history 1
 1.1.2 Definition of nutraceuticals 2
 1.1.3 Are nutraceuticals reliable? 3
 1.1.4 Future trends in nutraceutical production 3

1.2 Health effects of medicinal foods and herbs 4
 1.2.1 Antioxidant activity 4
 1.2.2 Anticancer effect 9
 1.2.3 Anti-inflammatory effect 9
 1.2.4 Antimicrobial effect 10
 1.2.5 Antidiabetic effects 11

1.3 Main uses of medicinal and aromatic plants 11
 1.3.1 Medicinal applications (pharmaceuticals, herbal medicines) 11
 1.3.2 Essential oil production 13
 1.3.3 Food applications 13
 1.3.4 Dyes and colorants production 16
 1.3.5 Applications in cosmetics 16
 1.3.6 Crop protection products 16

1.4 Herb and spice market 18
1.5 Conclusion 28
References 29

2. The health components of spices and herbs: The medicinal chemistry point of view 35
 Fernanda M.F. Roleira, Carla L. Varela, Ana R. Gomes, Saul C. Costa, Elisiário J. Tavares-da-Silva

2.1 Introduction 35
2.2 Phenolic compounds from extracts of spices and medicinal herbs with anticancer activity 36
2.3 Phenolic compounds from extracts of spices and medicinal herbs with anti-inflammatory activity 44
2.4 Phenolic compounds from extracts of spices and medicinal herbs with antioxidant activity 50
2.5 Phenolic compounds from extracts of spices and medicinal herbs with antidiabetic activity 58
2.6 Phenolic compounds from extracts of spices and medicinal herbs with antimicrobial effects 62
2.7 Structural changes on natural phenolics to modulate the biological activity 68
 2.7.1 Flavonoids 68
 2.7.2 Flavonolignans 69
 2.7.3 Chalcones 70
 2.7.4 Gallic acid derivatives 74
 2.7.5 Hydroxycinnamic acid derivatives 75
 2.7.6 Phenolipids 77
 2.7.7 Curcuminoids and analogs 78
 2.7.8 Stilbene derivatives 78
 2.7.9 Tyrosol derivatives 81
 2.7.10 Coumarins 82
 2.7.11 Other compounds 83
2.8 Mechanisms of biological activities 83
2.9 Conclusion 85
References 87

3. Mediterranean aromatic herbs and their culinary use 93
 Anastasia Stefanaki, Tinde van Andel

3.1 Introduction 93
3.2 Ancient culinary uses of aromatic herbs in the Mediterranean region 96
3.3 Aromatic herb species and their culinary uses in Mediterranean countries 98
 3.3.1 Basil 98
 3.3.2 Chervil 100
 3.3.3 Chive 100
 3.3.4 Coriander 101
CONTENTS

3.3.5 Dill 101
3.3.6 Fennel 102
3.3.7 Laurel 102
3.3.8 Lavender 103
3.3.9 Mint 103
3.3.10 Mountain tea 105
3.3.11 Oregano 106
3.3.12 Parsley 108
3.3.13 Rosemary 109
3.3.14 Sage 109
3.3.15 Tarragon 110
3.3.16 Thyme 110
3.3.17 Herb mixes 112
3.4 Exploitation of wild aromatic plant resources 113
3.5 Conclusions 114
References 114

4. Aromatic profile of rhizomes from the ginger family used in food 123
 Sarana Rose Sommano, Tibet Tangpao

4.1 Introduction 123
4.2 Plants of the Zingiberales 124
4.3 Morphology of the ginger family 125
4.4 Ethnobotany survey of rhizomes from the ginger family used in Thai food 126
 4.4.1 Meaung Mai market 127
 4.4.2 Meatha market, Lum Phoon 127
 4.4.3 Kum Tiang market, Chiang Mai 127
 4.4.4 Bann Huatapan, Nakron Sri Thamarat 127
 4.4.5 Bann Kohka, Lum Pang 132
4.5 The volatile analyzes 132
4.6 Factors influencing volatile compositions 156
 4.6.1 Variety 156
 4.6.2 Processing 157
 4.6.3 Harvesting stage 158
 4.6.4 Storage 159
4.7 Novel applications of ginger essential oils 159
4.8 Conclusion 160
References 161

5. Herbs drying 167
 Chien Hwa Chong, Adam Figiel, Antoni Szummy, Aneta Wojdylo,
 Bee Lin Chua, Chun Hong Khek, Ma Chee Yuan

5.1 Introduction 167
5.2 Fundamental concepts in herbs drying 168
5.3 Example of drying characteristics of selected herbs 169
5.4 Types of drying technology 170
 5.4.1 Sun drying 170
 5.4.2 Solar drying 171
 5.4.3 Convective hot air drying 171
 5.4.4 Microwave drying 172
 5.4.5 Microwave vacuum drying 173
 5.4.6 Heat pump drying 173
 5.4.7 Freeze drying 174
 5.4.8 Combined drying methods 174
 5.4.9 Modern/smart drying 174
 5.4.10 Ultrasonic and heat flux system 176
5.5 The sensitivity of total phenolic compounds, antioxidants, and minerals of herbs during drying 176
5.6 Enzymatic reactions and thermal degradation 185
5.7 Microwave power intensity 185
5.8 Freeze drying is a good drying method or only for control purpose 186
 5.8.1 Example of effects of drying methods on total phenolic compounds (TPC) for selected herbs 187
5.9 Retained volatile compounds and essential oils after drying 188
5.10 Conclusions 196
References 197

6. Analysis of herbal bioactives 201
 Ana M. Ares, José L. Bernal, María J. Nozal, José Bernal

6.1 Introduction 201
6.2 Phenolic compounds 205
 6.2.1 Flavonoids 209
 6.2.2 Phenolic acids 210
 6.2.3 Other phenolic compounds 211
6.3 Lipids and related compounds 213
 6.3.1 Terpenes and related compounds 216
 6.3.2 Fatty acids 217
 6.3.3 Other lipids 218
6.4 Vitamins and related compounds 219
 6.4.1 Vitamin C 219
 6.4.2 Vitamin E 221
6.5 Carbohydrates and related compounds 221
 6.5.1 Sugars 223
 6.5.2 Glycosides 223
6.6 Other bioactive compounds 224
 6.6.1 Proteins 224
 6.6.2 Minerals 226
 6.6.3 Organic acids 226
 6.6.4 Organic compounds 227
7. Extraction of bioactive compounds and essential oils from herbs using green technologies 233

Branimir Pavlić, Branislav Šojić, Nemanja Teslić, Predrag Putnik, Danijela Bursać Kovačević

7.1 Introduction 233
7.2 Ultrasound-assisted extraction of bioactive compounds and essential oils 235
7.3 Microwave-assisted extraction of bioactive compounds and essential oils 241
7.4 Supercritical fluid extraction of bioactive compounds and essential oils 246
7.5 Plant extracts and essential oils as antimicrobials in meat and meat products 250
7.6 Chemometrics and extraction technology 255
7.7 Conclusions 256
References 257

8. Encapsulation of herb extracts (Aromatic and medicinal herbs) 263

Marko Vinceković, Slaven Jurčić, Marijan Marijan, Marko Viskić, Kristina Viluviček-Kahlina, Luna Maslov Bandić

8.1 Introduction 263
8.2 Biopolymeric nanoparticles 264
8.3 Nanofibers 268
8.4 Nanohydrogels/nanooleogels 272
8.5 Nanoliposomes and lipid-based nanoparticles 275
8.5.1 Nanoliposomes 277
8.5.2 Nanoemulsions 282
8.5.3 Solid lipid nanoparticles and nanostructured lipid carriers 289
8.6 Alternative and emerging methods for encapsulation 298
8.7 Conclusions and remarks 300
References 300

9. Use of herbs and their bioactive compounds in active food packaging 323

Yaiza Flores, Carlos Javier Pelegrín, Marina Ramos, Alfonso Jiménez, María Carmen Garrigós

9.1 Introduction 323
9.2 Food packaging 324
9.3 Active packaging 325

9.3.1 Materials used for active packaging 326
9.3.2 Edible active packaging coatings and films 329
9.3.3 Active packaging systems used in the food industry 331
9.4 Herbs and spices 337
9.4.1 Antioxidants and antimicrobials properties of herb and spices in active packaging 340
9.5 Recent trends in the use of herbs and spices in active packaging 348
9.5.1 Recent trends in the use of essential oils in active packaging 350
9.6 Final remarks 353
References 355

10. Herbal slimming products and natural sexual enhancers 367

Tatiana Onisei, Anca Mihaela Micu, Manuela Rascol

10.1 Introduction 367
10.2 Herbal slimming products 369
10.2.1 Slimming potential of herbs and herbal preparations 369
10.2.2 Herbal food supplements for weight loss 375
10.2.3 Quality and safety of herbal products 376
10.2.4 Adulteration of natural supplements for weight loss 378
10.2.5 Secondary effects and adverse reactions of slimming herbal supplements 381
10.3 Natural sexual enhancers 382
10.3.1 Plant-based aphrodisiacs 384
10.3.2 Herbal food supplements for sexual life improvement 390
10.3.3 Adulteration of natural sexual enhancers 392
10.3.4 Secondary effects and adverse reactions of herbal supplements for sexual enhancement 395
10.4 Conclusions 395
References 397

11. Legislation on aromatic herbs in food 405

Gizem O. Cilak, Gamze N. Mujdeci, Bulent Kabak

11.1 Introduction 405
11.2 Regulatory authorities 407
11.3 Legislatorial requirements 408
 11.3.1 Microbiological requirements 410
 11.3.2 Physical and chemical requirements 414
11.4 Complementary regulations 423
 11.4.1 Sampling 424
 11.4.2 Labeling 424
 11.4.3 Contaminants and residues 425
 11.4.4 Food additives 429
11.4.5 Adulteration 430
11.4.6 Allergens 432
11.4.7 Packaging 432
11.5 Supporting guidance 432
11.6 Social and environmental requirements 434
11.7 Conclusion 435
References 435
Index 439
Contributors

Tinde van Andel Naturalis Biodiversity Center, Leiden, The Netherlands
Ana M. Ares IU CINQUIMA, Analytical Chemistry Group, University of Valladolid, Valladolid, Spain
José Bernal IU CINQUIMA, Analytical Chemistry Group, University of Valladolid, Valladolid, Spain
José L. Bernal IU CINQUIMA, Analytical Chemistry Group, University of Valladolid, Valladolid, Spain
Esra Capanoglu Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
Chien Hwa Chong Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
Bee Lin Chua Faculty of Innovation and Technology, School of Computer Science and Engineering, Taylor’s University, Subang Jaya, Selangor, Malaysia
Gizem O. Cilak Department of Food Engineering, Hitit University, Faculty of Engineering, Corum, Turkey
Saul C. Costa Univ Coimbra, FFUC, Laboratory of Pharmaceutical Chemistry, Coimbra, Portugal
Adam Figiel Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
Yaiza Flores University of Alicante, San Vicente del Raspeig (Alicante), Spain
María Carmen Garrigós University of Alicante, San Vicente del Raspeig (Alicante), Spain
Ana R. Gomes Univ Coimbra, FFUC, Laboratory of Pharmaceutical Chemistry, Coimbra, Portugal
Alfonso Jiménez University of Alicante, San Vicente del Raspeig (Alicante), Spain
Slaven Jurčič Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
Bulent Kabak Department of Food Engineering, Hitit University, Faculty of Engineering, Corum, Turkey
Senem Kamioloğlu Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Gorukle, Bursa, Turkey
Chun Hong Khek Faculty of Innovation and Technology, School of Computer Science and Engineering, Taylor’s University, Subang Jaya, Selangor, Malaysia
Marijan Marijan Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
Luna Maslov Bandić Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
Anca Mihaela Micu National Office for Medicinal and Aromatic Plants and Beehive Products, National Research and Development Institute for Food Bioresources – IBA Bucharest, Bucharest, Romania
Gamze N. Mujdeci Department of Food Engineering, Hitit University, Faculty of Engineering, Corum, Turkey
María J. Nozal IU CINQUIMA, Analytical Chemistry Group, University of Valladolid, Valladolid, Spain
Tatiana Onisei National Office for Medicinal and Aromatic Plants and Beehive Products, National Research and Development Institute for Food Bioresources – IBA Bucharest, Bucharest, Romania
CONTRIBUTORS

Tugba Ozdal Department of Food Engineering, Faculty of Engineering, Istanbul Okan University, Istanbul, Turkey

Branimir Pavlić Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia

Carlos Javier Pelegrín University of Alicante, San Vicente del Raspeig (Alicante), Spain

Predrag Putnik GreenBird Medical d.o.o., dr. Žarka Dolinara 18, Koprivnica, Croatia; Department of Food Technology, University North, Koprivnica, Croatia

Marina Ramos University of Alicante, San Vicente del Raspeig (Alicante), Spain

Manuela Rascol National Office for Medicinal and Aromatic Plants and Beehive Products, National Research and Development Institute for Food Bioresources – IBA Bucharest, Bucharest, Romania

Fernanda M.F. Roleira Univ Coimbra, CIEPQPF, FFUC, Laboratory of Pharmaceutical Chemistry, Coimbra, Portugal

Antoni Szummy Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida, Wroclaw, Poland

Sarana Rose Sommanno Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Thailand

Branislav Šojić Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia

Anastasia Stefanaki Naturalis Biodiversity Center, Leiden, The Netherlands

Tibet Tangpao Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Thailand

Elisíario J. Tavares-da-Silva Univ Coimbra, CIEPQPF, FFUC, Laboratory of Pharmaceutical Chemistry, Coimbra, Portugal

Nemanja Teslić Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia

Merve Tomas Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey

Gamze Toydemir Department of Food Engineering, Faculty of Engineering, Alanya Alaaddin Keykubat University, Antalya, Turkey

Carla L. Varela Univ Coimbra, CIEPQPF, FFUC, Laboratory of Pharmaceutical Chemistry, Coimbra, Portugal

Marko Vinceković Faculty of Agriculture, University of Zagreb, Zagreb, Croatia

Marko Viskić Faculty of Agriculture, University of Zagreb, Zagreb, Croatia

Kristina Vlahovićek-Kahlina Faculty of Agriculture, University of Zagreb, Zagreb, Croatia

Aneta Wojdyło Department of Fruit and Vegetable Technology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland

Ma Chee Yuan Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, Putrajaya, Malaysia
Herbs drying

Chien Hwa Chonga,∗, Adam Figielb, Antoni Szummyc, Aneta Wojdyłodo, Bee Lin Chuae, Chun Hong Khek, Ma Chee Yuanf

aChemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia; bInstitute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, Wrocław, Poland; cDepartment of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida, Wrocław, Poland; dDepartment of Fruit and Vegetable Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland; eFaculty of Innovation and Technology, School of Computer Science and Engineering, Taylor’s University, Subang Jaya, Selangor, Malaysia; fChemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, Putrajaya, Malaysia

∗Corresponding author.

5.1 Introduction

Preserve or perish of herbs. But how to preserve herbs? What are the barriers to retain the bioactive compounds of herbs in functional food and the key factors necessary to promote effective drying? Considering a different approach to investigate the retention of bioactive compounds, we believe that smart drying technology and the identification of specific compounds are the keys to retaining the product quality in this century. This chapter introduces the techniques and issues of the selected herbs drying, reviews the existing drying techniques and their impact on the bioactive compounds, and at last, introduces several smart drying technologies.

Thus far, it has been tacitly assumed that freeze drying is known for its ability to retain bioactive compounds in biomaterials. This fact is because of the low drying temperature and under vacuum conditions prevent the degradation of chemical composition compared to heat-treated dried products. For example, total loss of chlorophyll in oven-dried Apium graveolens was 65%, which was 45% higher than freeze drying (Mahanom et al., 1999). However, freeze drying is an expensive form of drying because of the inherently slow drying rate that leads to prolonged freezing and drying duration. Also, the high capital cost involved and the high energy
demands of the vacuum and refrigeration systems limit more extensive applications due to the high operation cost. Therefore, many of the researchers use freeze drying as control and references. The use of freeze drying in the industry is rather scarce. We are profoundly sensitive to high capital cost and long drying duration; the influence of bioactive compounds is not always the top priority, and often drying characteristics that linked to drying duration is more critical.

5.2 Fundamental concepts in herbs drying

Drying of herbs consists of mass and heat exchange, which enables the transfer of water molecules from solids. Weight losses of herbs must be measured from initial weight until equilibrium is established. Each batch of herbs subjects to drying must be consistent in terms of initial weight to get a fair comparison in terms of drying characteristics and product quality. To quantify the water amount in the herbs using moisture content, the herbs need to be dried at 105°C for 24 h to obtain bone dry weight, W_{BD}. Moisture content, MC, can be determined either in wet basis MC_{wb} (Eq. 5.1) or dry basis format MC_{db} (Eq. 5.2). In turn, the drying rate, DR, can be defined as a derivative of the function, representing the decrease in MC concerning the drying time t (Eq. 5.3).

Moisture content wet basis,

$$MC_{wb} = \frac{W_{S} - W_{BD}}{W_{S}}$$ \hspace{1cm} (5.1)

Moisture content dry basis,

$$MC_{db} = \frac{W_{S} - W_{BD}}{W_{BD}}$$ \hspace{1cm} (5.2)

Drying rate,

$$DR = \frac{dMC}{A dt}$$ \hspace{1cm} (5.3)

where W_{S} is the weight of sample, W_{BD} is the bone dry weight, MC is the moisture content, DR is the drying rate, t is the time, and A is the surface area.

Two typical drying characteristics are shown in Fig. 5.1. The standard drying characteristics curve includes (1) initial transient period, (2) constant rate period, (3) first falling rate period, and (4) second falling rate period; whereas hybrid drying characteristics curve consists of (1) initial transient period, (2) constant rate period, (3) first falling rate period, (4) second initial transient period associated with the implementation of VMFD, and (5) second falling rate period. Different drying curves occur due to different heating source or more effective operating conditions used in the drying of biomaterials. The solid and dotted lines represent the typical drying characteristic and hybrid drying characteristic curves, respectively. The example of hybrid drying is a combination of convective predrying followed by vacuum microwave finish drying (CPD-VMFD), which can induce intensive evaporation of water from the food material at the final stage of drying due to internal heating provided by microwaves. The intensive evaporation of water makes the drying time shorter at a lower temperature.
due to the cooling effect (Figiel, 2010). Shorter drying time at a lower temperature reduces nutritional, sensory, and chemical alterations (Drouzas and Schubert, 1996). Microwave drying has been gaining in popularity as the drying duration is concise, and the retention of bioactive compounds is acceptable. However, one of the drawbacks of microwave application is the scorching due to the inhomogeneity of the microwave field as well as the heterogenic structure of dried samples at the final stage of drying (Wray and Ramaswamy, 2015). To solve this issue, it leads to low-pressure microwave drying with rotational systems. The drying characteristics are highly dependent on the heat source used for drying. On top of vacuum and microwave, ultrasound and solar-assisted drying are widely used in herbs drying.

5.3 Example of drying characteristics of selected herbs

Figs. 5.2 and 5.3 show the herbs dried using the convective air drying (CD) and vacuum microwave (VM) techniques, respectively. Referring to the drying characteristics of herbs dried using the CD method, the MC of 1.8 and 0.3 kg H₂O/kg dm were identified as critical moisture contents. It is indicated using a vertical red color line in Fig. 5.2. The drying characteristics exhibited from this example are the initial transient period (right region), the first falling rate period (middle region), and the 2nd falling rate period (left region). The initial transitory period ranged from 1.8 to 3.0 kg H₂O/kg dm. No constant rate period due to the
fast moisture removal rate on the surface of the leaves. As the drying progressed, it crossed the vertical line and entered the middle zone, which was the 1st falling rate period with MC ranged from 0.3 to 1.8 kg H₂O/kg dm, the drying rate started to drop from 0.025 to 0.005 kg H₂O/kg dm min. The diffusion could cause the moisture losses via spaces between cells and pores of leave to the surface. The continuous diffusion of moisture reduces the efficiency of heat transfer. Furthermore, it was found that the drying duration ranged from 6 to 8 h at temperature and air velocity of 50°C and 0.8 m/s, respectively. Around 44% to 60% of total drying time fall under 2nd falling rate period, which ranged from 0 to 0.3 kg H₂O/kg dm with a decrease of drying rate from 0.005 kg H₂O/kg dm min to almost 0 kg H₂O/kg dm min. The diffusivity of the moisture from the internal part to the surface is relatively low, which prolongs the drying period.

For VM drying, the critical moisture points are indicated by the vertical red color line, which divides the constant drying rate period, 1st falling rate period, and 2nd falling rate period. The constant drying rate ranged from 0.20 to 0.25 kg H₂O/kg dm min at a MC of 1.0 to 3 kg H₂O/kg dm. It is swift compared to CD as the MC is removed using microwave energy with the aid of vacuum conditions. This technique reduces the vapor pressure, giving a more significant driving force for moisture to diffuse into the ambient and changes its physical states. As drying progressed from right to left, 1st falling rate period appeared, the drying rate decreased to 0.15 kg H₂O/kg dm min with MC ranged from 0.5 to 1.0 kg H₂O/kg dm. Microwave energy can generate heat to the internal part of the leaves, making the heat transfer and mass transfer happen effectively even the MC is low. Drying rate was still high as microwave energy generated heat by changing the electromagnetic field up to 2450 M times per second encouraged the mass transfer of moisture at the temperature of the material in the range of 50°C to 70°C.

5.4 Types of drying technology

5.4.1 Sun drying

The history of sun drying was as long as 20,000 BC, and the mechanical drying developed extremely fast at the end of World War II (Hayashi, 1989). Back then, Human utilizes natural energy like high wind speed, low humidity, and strong sunlight to preserve food and
Index

Note: Page numbers followed by “f” indicate figures, “t” indicate tables.

A
Acacetin-7-0-α-L-rhamno-pyranosyl(1→6)-β-D-glucopyranoside, 36
Acacia mearnsii, 369
Achyrantes aspera, 369
Active packaging, 325, 331f, 336
advantages and disadvantage, 326f
antioxidants and antimicrobials properties of herb
and spices in, 340
materials used for, 326
recent trends in the use of
essential oils in, 350
herbs and spices in, 348
systems used in the food industry, 331
systems with herbal and spice extracts, 341t
Adulteration
natural sexual enhancers, 392
natural supplements for weight loss, 378
Alkaloids, 227
Allium schoenoprasum, 100
Allylanisole, 196
Aloe, 368
Alpinia galangal L., 132
Alpinia officinarum, 133
Alpinia Roxb, 132
Aluminum trichloride (AlCl3) colorimetric assay, 203, 209
Amomum biflorum Jack, 153
Amomum Roxb., 153
Amomum schmidtii (K.Schum.), 153
Andrographis paniculata (HB), 187
Anethum graveolens, 101, 185
Anise, 209
Anthocyanidins (ANTHOs), 205, 369
Anthraquinones, 369
Anthriscus cerefolium, 100
Antibacterial, 339
Anticancer effect, 9
Anticoagulant/antiplatelet effects, 381
Antidepressant, 381, 390
Antidiabetic effects, 11
Antidiabetic effects, 11
Anti-inflammatory effect, 9, 209, 339
Antimicrobial

effect of plant extracts in meat processing, 10
packaging, 334
properties, 340
Antioxidant, 339, 340, 390
activity, 4, 387
packaging, 336
properties, 370
various herbs as affected by drying methods and
parameters, 177t
Antipyretic activities, 209
Aphrodisiac, 390
aphrodisiac effect of the horny goat weed, 390
Apigenin-7-O-β-D-glucopyranoside, 36
Appetite, 369, 370
appetite reduction, 370
appetite suppressor, 381
Araliaceae, 388
Aroma attributes and references for rhizomes of ginger
family, 133t
black turmeric, 148t
fingerroot, 152t
ginger, 137t
greater galangal, 134t
khing da, 139t
krachai dum, 156t
lesser galangal, 135t
ow, 150t
plai dum, 141t
plai, 143t
turmeric, 145t
wan sao long, 154t
white turmeric, 147t
Aromatic herbs, 201
species and their culinary uses in Mediterranean
countries, 98
Artemisia dracunculus, 110
Artificial neural network (ANN), 174, 247
Atomic absorption spectroscopy (AAS), 203
Ava tea (Orthosiphon aristatus), 185

B
Baicalein (BE), 291
Baicalin (BA), 291
Bakuchiol derivatives with anticancer effects, 84f
Bakuchiol, 83
Basil (Ocimum basilicum L.) leaves, 195
Basil, 209
Basil. See Ocimum basilicum
Benzodiazepines, 381
Benzophenones, 205, 211
Berberidaceae, 390
Betonica officinalis, 50, 58
Betula pendula, 375
Bioactive compounds
in aromatic herbs, 224
in conventional essential oils from plants or spices, 338f
reported in aromatic herbs in the last years (2015–19), 203f
Bioactive substances, 369
Biologically active compounds (BACs), 233
Bio-PE, 329
Biopolymeric nanoparticles, 264
Blueberries extract, 370
Body composition, 371
variables, 370
Body mass index, 370
Body weight, 370
Boerhavia erecta, 44
Boesenbergia rotunda (L.) Mansf, 151
Boesenbergia Roxb., 149
Borneol, 196, 339
Bumetanide, 381
Butylated hydroxyanisole (BHA, E-320), 336
Butylated hydroxytoluene (BHT, E-321), 336
C
Caffeine, 369
Camelia sinensis, 370
Camellia thea Link, 369
Camphene, 248
Camphor, 196, 248, 339
Cannaceae, 124
Capillary electrophoresis (CE), 205
Caralluma europaea, 58
Carbohydrates and related compounds in aromatic herbs, 221, 222f
Carbon dioxide releasers, 333
Carbon dioxide scavengers, 331
Carbon nanotubes, 299
Carcinogenicity, 381
Cardiac fibrosis, 381
Carica papaya, 369
Carnosic acid, 45f
Carpesium abrotanoides, 58
Carvacrol (5-isopropyl-2-methylphenol), 339
Carvone, 195
β-Caryophyllene, 195, 248
Casimir Funk, 2
Cassia alata (CA), 187
Cassia angustifolia, 44, 50, 58
Cellulose, 329
Chalcones, 70
Chamaemelum nobile, 50
Chemical composition of volatile oil, 132
Chemometrics, 255
and extraction technology, 255
Chervil. See Anthriscus cerefolium
Chitosan, 329
Chive. See Allium schoenoprasum
Chlorophylls, 218
Chlorophytum borivilianum, 384
Cholesterol levels, 369
Cichorium intybus, 369, 375
1,8-Cineole (eucalyptol), 248, 339
Cinnamaldehyde, 340
Cinnamaldehyde (3-phenyl-2-propanal), 340
Cinnamic aldehyde, 340
Cinnamomum cassia, 340, 390
Cinnamomum verum, 50, 58
Cinnamon and peppermint extracts, 44, 340
Cinnamon tree, 340
Cirsilineol, 50
Cirsiliol, 50
cis-dihydrocarvone, 195
Citronellol, 195
Clinacanthus nutans (SG), 187
Clove (Syzygium aromaticum L.), 288
Clove, 340
Clove extracts, 340
Colorimetric methods, 203
Combined drying methods, 196
Corchorus olitorius L., 50
Coriander (Coriandrum sativum L.), 254
Coriander. See Coriandrum sativum
Coriandrum sativum, 101
Cosmetics, applications in, 16
Cosmos caudatus, 59
Costaceae, 124
O-Coumaric acid, 59
Coumarins, 59, 82
Crocus sativus, 370, 384
Crop protection products, 16
Crowave hydrodiffusion and gravity (MWHG), 243
Cumin (Cuminum cyminum), 370
Curcuma angustifolia Roxb, 147
Curcuma Linn, 142
Curcuma longa L, 144
Curcuma mangga Valeton & Zijp, 144
Curcuminoids, 78, 205, 212
and analogs, 78
INDEX

Cynara scolymus, 375
Cytisus villosus, 36
Cytisus villosus Pourr, 50
Cytotoxic properties, 339

D
Daisy, 209
Dehydration, 381
Depression, 387
The Diocles of Carystus, 1
Digestive function, 375
Dill. See Anethum graveolens
Diplotaenia cachrydifolia, 58
Discriminant analysis, 255
Diuretic, 381
Dry Misai Kuching (O. stamineus) leaves, 185
Drying characteristics, 169f
of selected herbs, 169
Drying kinetic
of herbs for convective drying method, 169f
of herbs for VM method, 170f
Drying methods effects, on total phenolic compounds (TPC) for selected herbs, 187
Drying technology, types of, 170
combined drying methods, 174
convective hot air drying, 171
freeze drying, 174
heat pump drying, 173
microwave drying, 172
microwave vacuum drying, 173
modern/smart drying, 174
solar drying, 171
Sun drying, 170
ultrasonic and heat flux system, 176
Dyes and colorants production, 16

E
Edible active packaging coatings and films, 329
Elettariopsis schmidtii K. Schum, 153
Ellagic acid, 43f
Encapsulation, alternative and emerging methods for, 298
Enzymatic reactions and thermal degradation, 185
Ephedra sinica, 371
Epicatechin
Epigallocatechin, 370
Epimedium (horny goat weed), 390
Epimedium brevicornum, 390
Epimedium elatum, 390
Epimedium grandiflorum, 390
Epimedium koreanum, 390
Epimedium pubescens, 390
Epimedium sagittatum, 390
Epimedium wushanesis, 390
Equisetum giganteum, 44, 50
Erectile function, 388
Eriocaulon sieboldianum, 43
Essential oils, 340, 390
production, 13
of various herbs as affected by different drying methods, 189t
and volatile compounds of various herbs as affected by different drying methods, 189t
Ethnobotany survey of rhizomes from ginger family used in Thai food, 126
Bann Huatapan, Nakron Sri Thamarat, 127
Bann Kohka, Lum Fang, 132
Kum Tiang market, Chiang Mai, 127
Meatha market, Lum Phoon, 127
Meaung Mai market, 127
Ethylene scavengers, 332
Ethylene vinyl alcohol (EVOH) for food packaging, 328f
Eucalyptol, 248
Eugenol (2-methoxy-4-(2-propenyl) phenol), 340
Eugenol (4-allyl-2-methoxy phenol), 291, 340
Eurycoma longifolia, 384
Evodia rutaecarpa, 371
Evodiamine, 371

F
Factor analysis, 255
Fadogia agrestis, 384
Fatty acids, 217, 390
FD-dried lemon myrtle leaves, 195
Fenfluramine, 381
Fennel. See Foeniculum vulgare
Ferula hermonis, 390
Fish oil, 381
Flavan-3-ols, 205
Flavanoids, 42f
Flavanones, 42f
Flavones, 205
Flavonoids (FLAVS), 42f, 68, 205, 209, 369, 387, 390
Flavonolignans, 68f, 69
Flavonols, 205
Fleming, Alexander, 1
Fluidized bed (FB) drying, 195
Foeniculum vulgare, 102, 375
Folin–Ciocalteau (FCM) method, 203, 205
Food intake, 370
Food packaging, 324
materials and world consumption in 2017, 327f
trends in the market sector, 325t
Food preservation, 14
Formulated NLCs for delivery of medicinal plant extracts and essential oils. Lipid carriers, 294t
Freeze drying, 186
Fungreek fiber, 370
Furosemide, 370
Fuzzy logic program, 175

G
Galangal, 123
Gallic acid derivatives, 43, 74
Gas chromatography (GC), 201
Geranyl acetate, 196
Ginger essential oils, novel applications of, 159
Ginkgo (Ginkgo biloba, Ginkgoaceae family), 387
Ginkgo biloba, 368, 387
Ginkgo leaf extract, 387
Ginseng, 368, 388
Ginseng (Panax ginseng CA Meyer), 388
Glucose metabolism, 369
Glycosides, 223, 387, 390
Gynandropsis gynandra, 185

H
Halloysite, 299
Hart’s pennyroyal, 209
Health effects, of medicinal foods and herbs, 4
Heart disorders, 387
Heat flux measurement, 174
Herb and spice market, 18
Herbal food supplements
 for sexual life improvement, 390
 for weight loss, 375
Herbal preparations, 370
Herbal slimming products, 369
Herbal supplements, 370, 371
 sexual enhancement, secondary effects and adverse reactions of, 395
Herbal tea consumption, adulterated, 381
Herbal weight-loss supplements, adulterated, 381
Herbs drying, fundamental concepts in, 168
 drying rate, 168
 moisture content dry basis, 168
 moisture content wet basis, 168
Herbs and spices with antimicrobial/antioxidant activity, and composition of essential oils, 335
Herniaria fontanesii, 44, 50
High-performance liquid chromatography (HPLC), 201
High-performance thin layer chromatography (HPTLC), 205
Hippophae rhamnoides, 370
Hispidulin-7-O-β-D-glucopyranoside, 36
Honeybush herbal teas, 209
Horny goat weed, 390
Human health, 1
p-Hydroxybenzoic acid, 50
Hydroxycinnamic acids, 45, 59, 75

Hyoscyamus albus, 44, 50
Hypericum perforatum L., 240
Hypertext Markup Language (HTML), 174
Hypertext preprocessor (PHP), 174
Hypoglycemic properties, 370
Hypokalemia, 381
Hypotensive-diuretic properties, 370
Hypothalamus, 369
Hypoxis hemerocallidea, 50

I
Icariin, 390
Icariside-II, 390
Ilex paraguensis, 369
Immunomodulator, 390
Impatiens noli-tangere, 50
Inductively coupled plasma (ICP), 203
Infrared spectroscopy (IR), 203
Internet of Things (IoT), 174
Ion trap (IT), 209
Irvingia gabonensis, 370
Isodon rubescens, 186
Isoflavonoids, 42

J
Javascript programming languages, 174

K
Kaempferia Linn, 153
Kaempferia parviflora Wallich. ex Baker, 154
Kaempferia parviflora, 384
Kaempferol-3-O-glucoside, 36
Kaempferol-3-O-rutinoside, 36
Kaempferol-O-acetylglucoside-O-glucoside, 36
Kaempferol-O-glucoside-O-rutinoside, 36
Korean ginseng (Panax ginseng), 388
Korean red ginseng, 388

L
Labisia pumila, 36, 50
Lamiaceae, 185, 339
Laurel. See Laurus nobilis
Laurus nobilis, 102, 196
Lavandula angustifolia, 103
Lavandula stoechas, 103
Lavender. See Lavandula angustifolia
Laxative drugs, 381
Laxative effect, 375
Legislatorial requirements, 408
Lepidium meyenii, 384
Licium barbatum, 370
Lignans, 205
Limonene, 195
Linalool, 195, 339
Linalyl acetate, 196
Lipase, 369
Lipids, 201, 369
based nanoparticles, 275
and related compounds in aromatic herbs, 213, 214
Liposomes, 277
Lippia graveolens (LG), 49
Lippia palmeri (LP), 49
Liver toxicity, 381
Livistona chinensis, 44
Low libido, 388
Luteolin 7-O-glucoside, 36, 209
Male impotence, 390
Marantaceae, 124
Marrubium vulgare, 44, 50
Mass spectrometry, 174
Mathematical modelling, 255
Matricaria recutita, 50
Medicinal applications (pharmaceuticals, herbal medicines), 11
Medicinal herbs, 240
Medicinal plants, 1
Mediterranean herbs, 203
Melicope lunu-ankenda, 59
Melissa officinalis, 43, 44, 50
Mentha aquatica, 103
Mentha arvensis, 103
Mentha cervina, 103
Mentha longifolia var. calliantha, 58, 59
Mentha longifolia, 103
Mentha piperita, 185
Mentha pulegium, 103
Mentha requienii, 103
Mentha spicata, 103, 185
Mentha suaveolens, 103
Mentha x gentilis, 103
Mentha x piperita, 103
Mentha x villosa-nervata, 103
Menthone, 195
Metabolic rate (RMR), 371
2-Methoxy-1,3-benzenediol, 43
Microwave hydrodistillation (MWHD), 242
Microwave plasma-atomic emission spectrometry (MP-AES), 203
Microwave power intensity, 185
Microwave steam distillation (MWSD), 243
Microwave-assisted extraction of bioactive compounds and essential oils, 241
Minerals, 226
various herbs, as affected by drying methods and parameters, 177
Mint (Mentha longifolia L.), 370
Mint. See Mentha sp
Misai Kuching (Orthosiphon stamineus), 185
Moisture content, 240
Moisture regulators, 333
Moldavian dragonhead, 209
Mondlia whitei, 384
Montana tomentosa, 384
Motherwort (Leonurus cardiaca), 185
Mountain tea. See Sideritis sp
MS detectors, 205
Multivariate analysis (MANOVA), 255
Multivariate statistics, 255
Mutellina purpurea, 50
γ-Muurolene, 339
MW dried coriander (Coriandrum sativum) leaves, 185
Myricetin-3-O-arabinoside, 36
Myricetin-3-O-galactoside, 36
Myricetin-3-O-rhamnoside, 36
Myristica fragrans, 384
Myrtaceae, 340
Myrtanol, 196
Myrtenyl acetate, 196

N
Nanoemulsion preparation methods, 285
Nanoemulsions, 282
with EOs in real food products, 287
Nanofibers, 268
Nanohydrogels/nanooleogels, 272
Nanoliposomes, 275, 277
preparation methods, 280
Nanostructured lipid carriers (NLC) technology, 289, 292
Natural deep eutectic solvents (NADESs), 242
Natural sexual enhancers, 382
Nepitrin, 209
Nigella sativa, 370
N-Nitrososifenfluramine, 381
Nonadecane, 196
Nonphenolic auraptene, 59
Nonsteroidal anti-inflammatory drugs (NSAIDs), 381
Noricaruni, 390
Nuclear magnetic resonance (NMR), 203
Nutraceuticals, 1, 13
definition of, 2
future trends in production, 3
reliable, 3

O
Obese, 371
Ocimum basilicum, 98
Odor releasers, 333
Olive leaves (Olea europea), 370
Opuntia ficus-indica, 370
Oregano (O. vulgare L.) essential oil (OEO), 254
Oregano. See Origanum sp
Organic acids (ORGACs), 226
Origanum acutidens, 106
Origanum amanum, 106
Origanum compactum, 106
Origanum dayi, 106
Origanum dictamnus, 106
Origanum ehrenbergii, 106
Origanum elongatum, 106
Origanum floribundum, 106
Origanum isthmicum, 106
Origanum majorana, 106
Origanum microphyllum, 106
Origanum minutiflorum, 106
Origanum onites, 106
Origanum scabrum, 106
Origanum syriacum, 106
Origanum vulgare, 106
Origanum x majoricum, 106
Oven-dried Apium graveolens, 167
Oxygen scavengers, 331

P
Packaging material, 324
Panax ginseng, 384
Panax notoginseng (South China ginseng), 388
Panax quinquefolius (American ginseng), 388
Pancreatic amylase, 369
Parsley. See Petroselinum crispum
Patrinia villosa Juss, 50
Pausinystalia yohimbe, 384
PCL, 329
Peppermint (Mentha piperita), 185
Peppermint extracts, 44
Petroleum-based thermoplastics, 326
Petroselinum crispum, 108
Pharmaceutical industry, 2
Phenolic acids (PHAs), 205, 210
Phenolic compounds, 36, 205, 206t
Phenolipids, 77, 87
Phenolphthalein, 381
Phoenix dactylifera, 384
Phosphodiesterase-5A1 (PDE-5A1) activity, 390
Phthalides, 227
Phyta Nodiflora (PN), 187
Phytochemicals, 1
α Pinene, 248, 339
β-Pinene, 195
Piper nigrum, 50
PLA, 329
Plant extracts and essential oils, as antimicrobials in meat and meat products, 250
Plant roots, 388

Q
Quadrupole time-of-flight (QTOF), 209
Quality and safety, of herbal products, 376
Quercetin, 209
Quercetin-3-O-(6′′-O-galloyl)-β-d-galactopyranoside, 36
Quercetin-3-O-galactoside, 36
Quercetin-3-O-glucoside, 36
Quercetin-3-O-rhamnosome, 36
Quercetin-7-O-glucoside (quercimeritrin), 36, 58
Quercitrin, 36
Quinic acid, 45f, 226

R
Radura symbol, 424f
Regulatory authorities, 407
Resistance temperature detector (RTD), 174.
Resorcinol, 43
Retained volatile compounds and essential oils after drying, 188
Rhamnus frangula, 375
Rhazya stricta, 50
Rhizomes, 123
Rhus coriaria, 58
Rhus tripartita, 44, 50
Rosa damascena, 50
Rosemary (Rosmarinus officinalis), 44, 50, 109, 185, 203, 251, 339
Rosemary. See Rosmarinus officinalis See Salvia rosmarinus
INDEX

S
- Saffron, 209
- Sage (S. officinalis L.), 251
- Sage (Salvia officinalis), 339
- Sage. See Salvia
- Salvia fruticosa, 109
- Salvia officinalis L., 109, 240
- Salvia pomifera, 109
- Salvia rosmarinus, 109
- Salvia sclareoides, 50
- Sambucus australis, 50
- Sambucus nigra, 375
- Saponins, 369
- Satureja khuzestanica, 384
- Satureja Montana, 250
- Satureja, 209
- Sclareol, 339
- Scopoletin, 59
- Scutallarein, 58
- Selected studies, of health effects of herbs and spices, 6t
- Serotonin syndrome, 381
- Serturner, Friedrich, 1
- Sexual activity enhancement, 388
- Sexual function, 387
- Sideritis akmani, 105
- Sideritis argula, 105
- Sideritis argyrea, 105
- Sideritis bilgeriana, 105
- Sideritis brevibracteata, 105
- Sideritis caesarea, 105
- Sideritis ciclica, 105
- Sideritis clandestina, 105
- Sideritis condensata, 105
- Sideritis congesta, 105
- Sideritis dichotoma, 105
- Sideritis erythrantha, 105
- Sideritis euboea, 105
- Sideritis galatica, 105
- Sideritis germanicopolitana, 105
- Sideritis italica, 105
- Sideritis leptoclada, 105
- Sideritis libanotica, 105
- Sideritis lycia, 105
- Sideritis ozturkii, 105
- Sideritis perfoliata, 105
- Sideritis philomoides, 105
- Sideritis pisiâica, 105
- Sideritis raeseri, 105
- Sideritis rubriflora, 105
- Sideritis scardica, 105
- Sideritis sipylea, 105
- Sideritis syriaca, 105
- Sideritis tmolea, 105
- Sideritis trojana, 105
- Sideritis vulcanica, 105
- Sideritis vuralii, 105
- Sinapic acid, 59
- Slimming herbal supplements, secondary effects and adverse reactions of, 381
- Slimming potential of herbs and herbal preparations, 369
- Solid lipid nanoparticles, 289
- Spathulenol, 196
- Spectrophotometric (UV/Vis) procedure, 205
- Spices and aromatic herbs (SAH), 405
- adulteration, 430
- allergens, 432
- complementary regulations, 423
- contaminants and residues, 425
- labeling, 424
- with regard to SAH set by CAC and ESA, 423t
- sampling, 424
- food additives, 429
- legislatorial requirements, 408
- main quality assurance factors for SAH, 409t
- major SAH producing areas of world, 406f
- microbial criteria for spices established by FSSAI, 412t
- microbiological criteria of spices set by the ESA, 413t
- microbiological requirements, 410
- packaging, 432
- physical and chemical requirements
capsicums, 415
cinnamon, 415
cumin, 417
ginger, 418
pepper, 419
turmeric and curcumin, 420
vanilla, 423
- regulatory authorities, 407
- SAH exporter and importer countries, 406t
- social and environmental requirements, 434
- specific ISO standards on spices and culinary herb, 433t
- spice irradiation legislations in various countries, 414t
- Starch, 329
- Sterols, 219
- Stilbene derivatives, 78
- St John’s-wort (Hypericum perforatum), 368
- Strobilanthis crispus (SC), 187
- Structurally diverse bioactive compounds, encapsulated in NLCs, 292
- Sugarleaf, 203
- Sugars, 223
Sumerian age, 1
Supercritical CO₂, 248
Supercritical fluid extraction of bioactive compounds and essential oils, 246
Supplements, 368
Sweet basil (Ocimum basilicum L.), 251
Synthetic (petroleum-based) polymers, 327
Synthetic 7-O-esters of silybinin with neuroprotective effects, 71f
Synthetic antioxidants, 336
Synthetic chalcone derivatives, presenting antimicrobial activity, 73f
Synthetic flavonoids, 68f

T
tannins, 205, 212, 369
tarragon. See Artemisia dracunculus
Terminalia catappa, 384
terpenes, 216
α-Terpinene, 196
γ-Terpinene, 339
α-Terpineol, 195, 196
Terpinolene, 196
Tert-butylhydroquinone (TBHQ, E-319), 336
Tetrastigma hemsleyanum, 50
Thai cardamom seed (kravanh), 124
Theobromine, 369
Theophylline, 369
α-Thujone, 339
Thymbra capitata, 110
Thymbra spicata, 110
Thyme (T. vulgaris L.), 196
Thyme (Thymus sp.) essential oil (TEO), 255
Thyme. See Thymus
Thymelaea hirsuta, 44, 50
Thymus algeriensis, 110
Thymus broussonetti, 110
Thymus herba-barona, 110
Thymus hysenalis, 110
Thymus longicaulis, 50, 110
Thymus maroccanus, 110
Thymus mastichina, 110
Thymus pulegioides, 110
Thymus saturejoides, 110
Thymus serpyllum, 110
Thymus syriacus, 110
Thymus vulgaris (Lamiaceae), 110, 185, 339
Thymus x citriodorus, 110
Thymus zygis, 110
Tilia platyphyllos, 36, 44, 50
Total body fat, 370
Total carotenoid content (TCARC), 217
Total phenolic content (TPC), 205
Total phenolic content of commonly used herbs and spice, 5t
Total polyphenol compounds (TPC), 177t
Total protein content (TPROC), 224
Trans-2-hexenal, 196
Trans-2-hexenol, 196
Tribulus terrestris, 384, 387, 390
Tricycene, 196
Triglyceride levels, 369
Trigonella foenum-graecum, 50
Triple quadrupole (QqQ), 209
Tuneable diode laser absorption spectroscopy (TDLAS), 174
Turmeric, 123
Turnera diffusa, 384
Tyrosol derivatives, 81

U
UK evening-primrose (Oenothera biennis), 368
Ultra high-performance liquid chromatography (UHPLC), 201
Ultrasound-assisted extraction of bioactive compounds, and essential oils, 235
UV/Vis-based detectors (DAD/PDA), 205

V
Vacuum microwave hydrodistillation, 243
Valencene, 196
Vanillin, 50
Vasodilator, 390
Verbenone, 339
Vitamin E, 221
Vitamins and related compounds, in aromatic herbs, 220t
Vitex negundo, 185
Vitex trifolia, 185
Volatile compositions, factors influencing, 156
Volatile compounds, 196
various herbs as affected by different drying methods, 189t
Volatile organic compounds (VOCs), 227
Volatile profiles of
Alpinia galanga L., 135f
Alpinia officinarum, 136f
Amomum biflorum Jack., 155f
Boesenbergia rotunda (L.) Mansf., 152f
Curcuma aeruginosa Roxb, 149f
Curcuma angustifolia Roxb., 150f
Curcuma longa L., 146f
Curcuma mangga Valeton & Zijp, 148f
Zingiber cassumunar Roxb, 143f
Zingiber kerrii Craib, 139f
Zingiber officinale Roscoe, 138f
Zingiber ottensii Valeton, 142f
INDEX

W
Waist and hip circumferences, 370
Waist circumference, 370
Weighlevel, 370
Wild aromatic plant resources, 113
Winter savory (Satureja montana L.), 254

X
Xanthones, 205, 211

Z
Zanthoxylum armatum DC, 36
Zataria multiflora essential oil nanoliposomes, 281
Zea mays, 375
Zingiber cassumunar Roxb, 140
Zingiber kerrii Craib, 138
Zingiber officinale Roscoe, 49, 136
Zingiber ottensii Valeton, 139
Zingiberaceae, 123–125
distinctive features of the ginger flower, 125f
floral morphology of, 125f
ginger family, utilizations of collected rhizomes, 130t
subfamilies and six tribes, 126
taxonomical characteristics of
Zingiberales, 124
Ziziphus lotus, 44, 50
Zygophyllaceae, 387
AROMATIC HERBS IN FOOD
Bioactive Compounds, Processing and Applications

Edited by CHARIS M. GALANAKIS

Covers the latest developments of applications in foods from aromatic and medicinal herbs

Aromatic Herbs in Food: Bioactive Compounds, Processing, and Applications thoroughly explores the properties of aromatic and medicinal herbs in view of their bioactive compounds, new trends in procedures for their recovery, and their applications in food. Used in food supplements, packaging, and other products, bioactive compounds from herbs, spices, and other food products are functional from nutritive and technological standpoints and can offer significant wellness benefits.

Beginning with the health components and medicinal chemistry of spices and herbs, the book then presents current trends in herb applications with an emphasis on Mediterranean aromatic herbs and their culinary use, the analysis and extraction of bioactive compounds and essential oils from herbs using green technologies, and herbs drying and the encapsulation of herbs extracts. The book also discusses different applications of herbs and their bioactive ingredients, such as usage in active food packaging, in slimming products, and as natural sexual enhancers.

Aromatic Herbs in Food: Bioactive Compounds, Processing, and Applications is an ideal resource for food scientists, technologists, engineers, and chemists working in food science; nutrition researchers working in food applications and food processing; and anyone interested in the development of innovative products and functional foods.

Key Features

• Covers all important aspects of herbs, such as properties, processing and recovery issues, and applications
• Presents health components of spices and herbs, their culinary use, and legislation issues regarding the application of aromatic herbs in food
• Explores herbs’ processing, extraction technologies, green extraction technologies, encapsulation of recovered bioactives, applications, and interactions with food components

About the Editor
Charis M. Galanakis is a multidisciplinary scientist in agricultural sciences as well as food and environmental science, technology, and sustainability, with experience in both industry and academia. He is the research and innovation director of Galanakis Laboratories in Chania, Greece, an adjunct professor of King Saud University in Riyadh, Saudi Arabia, and the director of Food Waste Recovery Group (SIG5) of ISEKI Food Association in Vienna, Austria. He pioneered the new discipline of food waste recovery and has established the most prominent innovation network in the field. He also serves as a senior consultant for the food industry and expert evaluator for international and regional funded programs and proposals. He is an editorial board member of Food and Bioproducts Processing, Food Research International, and Foods, has edited over 45 books, and has published hundreds of research articles, reviews, monographs, chapters, and conference proceedings.