Performance of finite order distribution-generated universal portfolios

Sook Theng Pang, How Hui Liew, and Yun Fah Chang

Citation: AIP Conference Proceedings 1830, 020059 (2017); doi: 10.1063/1.4980922
View online: https://doi.org/10.1063/1.4980922
View Table of Contents: http://aip.scitation.org/toc/apc/1830/1
Published by the American Institute of Physics

Articles you may be interested in

Universal portfolios generated by Vandermonde generating matrix
AIP Conference Proceedings 1830, 020061 (2017); 10.1063/1.4980924
Performance of the reverse Helmbold universal portfolio
AIP Conference Proceedings 1830, 020023 (2017); 10.1063/1.4980886
Universal portfolios generated by the Bregman divergence
AIP Conference Proceedings 1830, 020021 (2017); 10.1063/1.4980884
Preface: The 4th International Conference on Mathematical Sciences
AIP Conference Proceedings 1830, 010001 (2017); 10.1063/1.4980863
Tweets clustering using latent semantic analysis
AIP Conference Proceedings 1830, 020060 (2017); 10.1063/1.4980923
Markowitz portfolio optimization model employing fuzzy measure
AIP Conference Proceedings 1830, 040004 (2017); 10.1063/1.4980932

Performance of Finite order Distribution-Generated Universal Portfolios

Sook Theng Pang ${ }^{1, a)}$ and How Hui Liew ${ }^{1, b)}$ and Yun Fah Chang ${ }^{1, c)}$
${ }^{1}$ Department of Mathematical and Actuarial Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43000, Kajang, Malaysia
Corresponding author: ${ }^{\text {a) }}$ pangst @utar.edu.my
${ }^{\text {b) }}$ liewhh@utar.edu.my
${ }^{\text {c) }}$ changyf@utar.edu.my

Abstract

A Constant Rebalanced Portfolio (CRP) is an investment strategy which reinvests by redistributing wealth equally among a set of stocks. The empirical performance of the distribution-generated universal portfolio strategies are analysed experimentally concerning 10 higher volume stocks from different categories in Kuala Lumpur Stock Exchange. The time interval of study is from January 2000 to December 2015, which includes the credit crisis from September 2008 to March 2009. The performance of the finite-order universal portfolio strategies has been shown to be better than Constant Rebalanced Portfolio with some selected parameters of proposed universal portfolios.

INTRODUCTION

The idea of using a probability distribution to generate a universal portfolio is due to Cover [1]. The CoverOrdentlich universal portfolio [2] is a moving-order universal portfolio. This moving-order universal portfolio are not practical in the sense that as the number of stocks in the portfolio increases, the implementation time and the computer storage requirements grow exponentially fast. A finite-order universal portfolio generated by some probability distribution, due to [3] with comparable performance and requiring faster implementation time and much lesser computer memory is introduced. This type of universal portfolio depends only on the positive moments of the generating probability distribution.

TABLE 1. Ten most active stocks from different categories

Category	Stock Code	Stock Name	Average Volume	Period
Construction	5398	Gamuda Bhd	4986282.33	January 2000 to December 2015
Consumer Product	7084	QL Resources Berhad	2086150	March 2000 to December 2015
Finance	1818	Bursa Malaysia Bhd	51271350	January 2005 to December 2015
Hotel	5517	Shangri-La Hotels Malaysia Bhd	69100	January 2000 to December 2015
Industry Products	7106	Supermax Corporation	12656000	January 2000 to December 2015
Bhd	5031	Time Dotcom Bhd	630100	March 2001 to January 2015
Plantation	2216	IJM Plantation Bhd	10168800	July 2003 to December 2015
Properties	5148	UEM Sunrise Bhd	9561550	January 2000 to December 2015
Trading Services	5099	Air Asia Bhd	94589600	November 2004 to December 2015
Trading Services	3182	Genting Bhd	13869700	January 2000 to December 2015

We present an experimental study of two finite order distribution-generated universal portfolios, namely the finite order Multinomial universal portfolio and the finite order Multivariate Normal universal portfolio. Ten most active
stocks data from Kuala Lumpur Stock Exchange with higher volume from different categories are selected from the top 100 listed companies [4]. The day-end KLSE data was obtained from [5]. The database contains daily opening prices, daily closing prices, daily high and low, and the volume of transaction. These ten stocks data with their respective code are shown in Table 1. The trading period is between January 2000 to December 2015. The above order one universal portfolios are run on every dataset consist of three stock data generated from the combination of these 10 selected most active stocks. The wealth achieved after the n trading days by the above portfolio strategies is compared to the wealth obtained by CRP strategies. The well performing parameters of the above two universal portfolio strategies are observed.

GENERAL METHOD FOR UNIVERSAL PORTFOLIO GENERATION

Consider an m-stock market. Let $\mathbf{x}_{n}=\left(x_{n i}\right)$ be the stock-price-relative vector on the $n^{\text {th }}$ trading day, where $x_{n i}$ denotes the stock-price relative of stock i on day n, which is defined to be the ratio of the closing price to its opening price on day n, for $i=1,2, \cdots, m$. Let $\hat{\mathbf{b}}_{n}=\left(\hat{b}_{n, i}\right)$ denotes the universal portfolio vector on the $n^{\text {th }}$ trading day, where $\hat{b}_{n i}$ is the proportion of the current wealth on day n invested on stock i, for $i=1,2, \cdots, m$ and $\sum_{i=1}^{m} b_{n i}=1$. The initial wealth \hat{S}_{0} is assumed to be one unit and the wealth at the end of $n^{\text {th }}$ trading day \hat{S}_{n} is giving by

$$
\begin{equation*}
\hat{S}_{n}=\hat{\mathbf{b}}_{1}^{t} \mathbf{x}_{1} \times \hat{\mathbf{b}}_{2}^{t} \mathbf{x}_{2} \times \cdots \times \hat{\mathbf{b}}_{n}^{t} \mathbf{x}_{n} \tag{1}
\end{equation*}
$$

where \mathbf{b}^{t} denotes the transpose of the vector \mathbf{b}.
The theory of universal portfolio order v generated by probability distribution is due to [3]. Let $Y_{1}, Y_{2}, \cdots, Y_{m}$ be m discrete/continuous random variables having joint probability mass/density function $f\left(y_{1}, \cdots, y_{m}\right)$ defined over the domain D where

$$
\begin{equation*}
D=\left\{\left(y_{1}, \cdots, y_{m}\right): f\left(y_{1}, \cdots, y_{m}\right)>0\right\} . \tag{2}
\end{equation*}
$$

Furthermore, let \mathbf{y} denote the vector $\left(y_{1}, \cdots, y_{m}\right)$. If $Y_{1}, Y_{2}, \cdots, Y_{m}$ are mutually independent, we can have a mixture of discrete and continuous random variables. Given a positive integer v, the universal portfolio $\hat{\mathbf{b}}_{n+1}$ of order v generated by $Y_{1}, Y_{2}, \cdots, Y_{m}$ is defined as

$$
\begin{equation*}
\hat{b}_{n+1, k}=\frac{\int_{D} y_{k}\left(\mathbf{y}^{t} \mathbf{x}_{n}\right)\left(\mathbf{y}^{t} \mathbf{x}_{n-1}\right) \cdots\left(\mathbf{y}^{t} \mathbf{x}_{n-(v-1)} f\left(y_{1}, \cdots, y_{m}\right) d \mathbf{y}\right.}{\int_{D}\left(y_{1}+\cdots+y_{m}\right)\left(\mathbf{y}^{t} \mathbf{x}_{n}\right)\left(\mathbf{y}^{t} \mathbf{x}_{n-1}\right) \cdots\left(\mathbf{y}^{t} \mathbf{x}_{n-(v-1)} f\left(y_{1}, \cdots, y_{m}\right) d \mathbf{y}\right.} \tag{3}
\end{equation*}
$$

FINITE ORDER DISTRIBUTION-GENERATED UNIVERSAL PORTFOLIOS AND CONSTANT REBALANCED PORTFOLIO

The Finite Order Multinomial Universal Portfolio

Let the random variables $Y_{1}, Y_{2}, \cdots, Y_{m}$ have a joint multinomial distribution with parameters $N, p_{1}, p_{2}, \cdots, p_{m-1}$ where $0<p_{i}<1$ for $i=1,2, \cdots, m-1$ and $0<p_{m}=1-p_{1}-p_{2}-\cdots-p_{m-1}<1 ; N$ is a positive integer bigger than m, which is the number of stocks in the market. The joint probability function $f\left(y_{1}, y_{2}, \cdots, y_{m}\right)$ is given by

$$
f\left(y_{1}, y_{2}, \cdots y_{m}\right)=\left(\begin{array}{cccc}
& N & & \tag{4}\\
y_{1} & y_{2} & \cdots & y_{m}
\end{array}\right) p_{1}^{y_{1}} p_{2}^{y_{2}} \cdots p_{m}^{y_{m}}
$$

where the multinomial coefficient $\left(\begin{array}{cccc} & N & & \\ y_{1} & y_{2} & \ldots & y_{m}\end{array}\right)$ is defined by

$$
\left(\begin{array}{cccc}
& N & & \tag{5}\\
y_{1} & y_{2} & \cdots & y_{m}
\end{array}\right)=\frac{N!}{y_{1}!y_{2}!\cdots y_{m}!}
$$

and $y_{i}=0,1,2, \cdots, N$ for $i=1,2, \ldots, m$ subject to $y_{1}+y_{2}+\cdots+y_{m}=N$. The joint moment generating function $M\left(\tau_{1}, \tau_{2} \cdots, \tau_{m}\right)$ of the multinomial distribution (4) is given by

$$
\begin{equation*}
M\left(\tau_{1}, \tau_{2}, \cdots, \tau_{m}\right)=\left(p_{1} e^{\tau_{1}}+p_{2} e^{\tau_{2}}+\cdots+p_{m} e^{\tau_{m}}\right)^{N} \tag{6}
\end{equation*}
$$

Let $M^{n_{1}, n_{2}, \cdots, n_{m}}\left(\tau_{1}, \tau_{2}, \cdots, \tau_{m}\right)$ denote the partial derivative $\frac{\partial^{n_{1}+n_{2}+\cdots n_{m}} M\left(\tau_{1}, \tau_{2}, \cdots, \tau_{m}\right)}{\partial \tau_{1}^{n_{1}} \partial \tau_{1}^{n_{1} \cdots \partial \tau_{m}^{n_{m}}}}$ and $M^{n_{1}, n_{2}, \cdots, n_{m}}(0,0, \ldots, 0)$ will denote the value of the partial derivative evaluated at $\tau_{1}=\tau_{2}=\cdots=\tau_{m}=0$. It is known that

$$
\begin{equation*}
E\left[Y_{1}^{n_{1}} Y_{2}^{n_{2}} \cdots Y_{m}^{n_{m}}\right]=M^{n_{1}, n_{2}, n_{m}}(0,0, \cdots, 0) \tag{7}
\end{equation*}
$$

If n_{k} in (7) is increased by 1 , then we adopt the notation

$$
\begin{equation*}
E\left[Y_{1}^{n_{1} \cdots} Y_{k}^{n_{k}+1} \cdots Y_{m}^{n_{m}}\right]=M^{n_{1}, n_{2}, \cdots, n_{k}+1, \cdots n_{m}}(0,0, \cdots, 0), \quad \text { for } k=1,2, \cdots, m \tag{8}
\end{equation*}
$$

Let $\mathbf{x}_{n}=\left(x_{n i}\right) \geq 0$ be the nonnegative price-relative or asset-relative vector on the $n^{\text {th }}$ trading day for $n=1,2, \cdots$, where the price-relative of a stock/asset is defined to be the ratio of the closing price to its opening price [2]. We adopt the notation $\mathbf{x}^{n}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{n}\right)$ to denote a sequence of price-relative vectors from first to the $n^{\text {th }}$ trading day.

Let the domain D of the function $f(\mathbf{y})$ given by (4) be

$$
\begin{equation*}
D=\left\{\mathbf{y}: f(\mathbf{y})>0, \sum_{i=1}^{m} y_{i}=N, y_{i}=0,1, \ldots, N \text { for }, i=1,2, \cdots, N\right\} \tag{9}
\end{equation*}
$$

where the vector $\mathbf{y}=\left(y_{1}, y_{2}, \cdots, y_{m}\right)$. Given a positive integer v and \mathbf{x}, the multinomial universal portfolio of order v is defined by the sequence of portfolio vectors $\hat{\mathbf{b}}_{n+1, k}=\left(b_{n+1, k}\right)$ given by

$$
\begin{equation*}
\hat{\mathbf{b}}_{n+1, k}=\frac{\sum_{\mathbf{y} \in D} y_{k}\left(\mathbf{y}^{t} \mathbf{x}_{n}\right)\left(\mathbf{y}^{t} \mathbf{x}_{n-1}\right) \ldots\left(\mathbf{y}^{t} \mathbf{x}_{n-(v-1)}\right) f(\mathbf{y})}{N \sum_{\mathbf{y} \in D}\left(\mathbf{y}^{t} \mathbf{x}_{n}\right)\left(\mathbf{y}^{t} \mathbf{x}_{n-1}\right) \ldots\left(\mathbf{y}^{t} \mathbf{x}_{n-(v-1)}\right) f(\mathbf{y})} \tag{10}
\end{equation*}
$$

for $k=1,2, \cdots, m$ and $n=1,2 \cdots, ; f(\mathbf{y})$ and D are given by (4) and (9) respectively. We shall omit D whenever the domain of summation is clear in the context.Note that (10) can be rewritten in the form

$$
\begin{equation*}
\left.\hat{\mathbf{b}}_{n+1, k}=\zeta_{n, v}\left\{\sum_{i_{1}=1}^{m} \sum_{i_{2}=1}^{m} \cdots \sum_{i_{v}=1}^{m}\left(x_{n_{i_{1}}} x_{n-1, i_{2}} \cdots x_{n-v+1, i_{v}}\right) \times E\left[Y_{1}^{n_{1}(k ; \mathbf{i})} Y_{2}^{n_{2}(k ; \mathbf{i})} \cdots Y_{m}^{n_{m}(k ; \mathbf{i})}\right)\right]\right\} \tag{11}
\end{equation*}
$$

for $k=1,2, \cdots m$ where the constant $\zeta_{n, v}$ is given by

$$
\begin{equation*}
\zeta_{n, v}=\left\{N \sum_{i_{1}=1}^{m} \sum_{i_{2}=1}^{m} \cdots \sum_{i_{v}=1}^{m}\left(x_{n_{i_{1}}} x_{n-1, i_{2}} \cdots x_{n-v+1, i_{v}}\right) \times E\left[Y_{1}^{n_{1}(\mathbf{i})} Y_{2}^{n_{2}(\mathbf{i})} \cdots Y_{m}^{n_{m}(\mathbf{i})}\right]\right\}^{-1} \tag{12}
\end{equation*}
$$

the vector $\mathbf{i}=\left(i_{1}, i_{2}, \cdots, i_{v}\right) ; 1 \leq i_{j} \leq m$ for $j=1,2, \cdots m ; n_{j}(k ; \mathbf{i})$ is the number of y_{j}^{\prime} s in the product $\left(y_{k} y_{i_{1}} y_{i_{2}} \cdots y_{i_{v}}\right)$; $n_{j}(\mathbf{i})$ is the number of $y_{j}^{\prime} \mathrm{s}$ in the $\operatorname{product}\left(y_{i_{1}} y_{i_{2}} \cdots y_{i_{v}}\right) ; \sum_{j=1}^{m} n_{j}(k ; \mathbf{i})=v+1$ and $\sum_{j=1}^{m} n_{j}(\mathbf{i})=v$. To see this, consider the numerator of $\hat{b}_{n+1, k}$ in (10):

$$
\begin{aligned}
& \sum_{\mathbf{y}} y_{k}\left(\sum_{i_{1}=1}^{m} y_{i_{1}} x_{n i_{1}}\right)\left(\sum_{i_{2}=1}^{m} y_{i_{2}} x_{n-1, i_{2}}\right) \cdots\left(\sum_{i_{v}=1}^{m} y_{i_{v}} x_{n-v+1, i_{v}}\right) f(\mathbf{y}) \\
& =\sum_{\mathbf{y}} y_{k}\left[\sum_{i_{1}=1}^{m} \sum_{i_{2}=1}^{m} \cdots \sum_{i_{v}=1}^{m}\left(y_{i_{1}} y_{i_{2}} \ldots y_{i_{v}}\right)\left(x_{n i_{1}} x_{n-1, i_{2}} \cdots x_{n-v+1, i_{v}}\right] f(\mathbf{y})\right. \\
& =\sum_{i_{1}=1}^{m} \sum_{i_{2}=1}^{m} \cdots \sum_{i_{v}=1}^{m}\left(x_{n i_{1}} x_{n-1, i_{2}} \cdots x_{n-v+1, i_{v}}\right]\left[\sum_{\mathbf{y}}\left(y_{k} y_{i_{1}} y_{i_{2}} \cdots y_{i_{v}}\right) f(\mathbf{y})\right]
\end{aligned}
$$

which is the same as the numerator of (11) by counting the number of $y_{1}^{\prime} \mathrm{s}, y_{2}^{\prime} \mathrm{s} \ldots . . y_{m}^{\prime} \mathrm{s}$ in the product $\left(y_{k} y_{i_{1}} y_{i_{2}} \ldots . y_{i_{m}}\right)$. A similar derivation shows that the denominators of (10) and (11) are the same.

The Finite Order Multivariate Normal Universal Portfolio

Let v be a positive integer. Let the random variables $\mathrm{Y}=\left(Y_{1}, Y_{2}, \cdots, Y_{m}\right)$ have a joint multivariate normal probability density function $f\left(y_{1}, y_{2}, \cdots y_{m}\right)$ defined over B, where $B=\left\{\left(y_{1}, y_{2}, \cdots y_{m}\right):-\infty<y_{i}<\infty, i=1, \cdots, m, f\left(y_{1}, \cdots y_{m}\right)>\right.$ $0\}$, where

$$
\begin{equation*}
f(\mathbf{y})=\frac{e^{-\frac{1}{2}(\mathbf{y}-\mu)^{t} K^{-1}(\mathbf{y}-\mu)}}{(\sqrt{2 \pi})^{n}|K|^{1 / 2}} \tag{13}
\end{equation*}
$$

K is the covariance matrix of $Y, \mu=\left(E\left(Y_{1}\right), E\left(Y_{2}\right), \cdots, E\left(Y_{m}\right)\right)$ is the mean vector. We say Y has the multivariate normal distribution $N(\mu, K),|\cdot|$ means determinate.

The universal portfolio $\hat{b}_{n+1, k}$ of order v generated by the joint p.d.f $f(\mathbf{y})$ is defined as :

$$
\begin{equation*}
\hat{\mathbf{b}}_{n+1, k}=\frac{\int_{B} y_{k}\left(\mathbf{y}^{t} \mathbf{x}_{n}\right)\left(\mathbf{y}^{t} \mathbf{x}_{n-1}\right) \cdots\left(\mathbf{y}^{t} \mathbf{x}_{n-(v-1)}\right) f(\mathbf{y}) d(\mathbf{y})}{\int_{B}\left(y_{1}+\cdots+y_{m}\right)\left(\mathbf{y}^{t} \mathbf{x}_{n}\right)\left(\mathbf{y}^{t} \mathbf{x}_{n-1}\right) \cdots\left(\mathbf{y}^{t} \mathbf{x}_{n-(v-1)}\right) f(\mathbf{y}) d(\mathbf{y})} \tag{14}
\end{equation*}
$$

for $k=1,2, \cdots, m ; y=\left(y_{1}, y_{2}, \cdots, y_{m}\right), n=0,1,2, \cdots$. The theory of universal portfolio order v generated by probability distribution is due to [3], where we assume that $E\left[Y_{1}^{n_{1}} Y_{2}^{n_{2}} \ldots . . Y_{m}^{n_{m}}\right] \geq 0$ for all non-negative integers $n_{1}, n_{2}, \cdots, n_{m}$ satisfy $0 \leq n_{i} \leq v+1$ for $i=1,2, \cdots, m$ and $\sum_{i=1}^{m}=v+1$. The numerator of $\hat{b}_{n+1, k}$ can be rewritten as

$$
\begin{align*}
& \int_{B} y_{k}\left(\sum_{i_{1}=1}^{m} y_{i_{1}} x_{n i_{1}}\right)\left(\sum_{i_{2}=1}^{m} y_{i_{2}} x_{n-1, i_{2}}\right)\left(\sum_{i_{v}=1}^{m}\left(y_{i_{v}} x_{n-v+1, i_{v}}\right)\right) f(\mathbf{y}) d(\mathbf{y}) \\
= & \int_{B} y_{k}\left[\sum_{i_{1}=1}^{m} \sum_{i_{2}=1}^{m} \cdots \sum_{i_{v}=1}^{m}\left(y_{i_{1}} y_{i_{2}} \cdots y_{i_{v}}\right)\left(x_{n i_{1}} x_{n-1, i_{2}} \cdots x_{n-v+1, i_{v}}\right)\right] f(\mathbf{y}) d(\mathbf{y}) \tag{15}\\
= & \sum_{i_{1}=1}^{m} \sum_{i_{2}=1}^{m} \cdots \sum_{i_{v}=1}^{m}\left(x_{n i_{1}} x_{n-1, i_{2}} \cdots x_{n-v+1, i_{v}}\right) E\left[Y_{1}^{n_{1}(k ; \mathbf{i})} Y_{2}^{n_{2}(k ; \mathbf{i})} \cdots Y_{m}^{n_{m}(k ; \mathbf{i})}\right]
\end{align*}
$$

where $n_{j}(k ; \mathbf{i})$ is the number of y_{j} 's in the product $\left(y_{k} y_{i_{1}} y_{i_{2}} \cdots y_{i_{v}}\right), i=\left(i_{1}, i_{2}, \cdots, i_{m}\right)$ for $1 \leq i_{j} \leq m$ for $j=1,2, \cdots, m$ $; 0 \leq n_{j}(k ; \mathbf{i}) \leq v+1$ and $\sum_{j=1}^{m} n_{j}(k ; \mathbf{i})=v+1$. The denominator of $\hat{\mathbf{b}}_{n+1, k}$ is normalizing constant ζ_{n+1}^{-1}. where

$$
\begin{equation*}
\zeta_{n+1}=\left\{\sum_{k=1}^{m}\left[\sum_{i_{1}=1}^{m} \cdots \sum_{i_{v}=1}^{m}\left(x_{n i_{1}} x_{n-1, i_{2}} \cdots x_{n-v+1, i_{v}}\right) E\left[Y_{1}^{n_{1}(k ; \mathbf{i})} Y_{2}^{n_{2}(k ; \mathbf{i})} \cdots Y_{m}^{n_{m}(k ; \mathbf{i})}\right]\right]\right\}^{-1} \tag{16}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\hat{\mathbf{b}}_{n+1, k}=\zeta_{n+1} \sum_{i_{1}=1}^{m} \ldots . \sum_{i_{v}=1}^{m}\left(x_{n i_{1}} x_{n-1, i_{2}} \cdots x_{n-v+1, i_{v}}\right) E\left[Y_{1}^{n_{1}(k ; \mathbf{i})} Y_{2}^{n_{2}(k ; \mathbf{i})} \cdots Y_{m}^{n_{m}(k ; \mathbf{i})}\right] \tag{17}
\end{equation*}
$$

for $k=1,2, \cdots, m$. Note that ζ_{n+1} in (16) can also be written as

$$
\begin{equation*}
\zeta_{n+1}=\left\{\sum_{i_{1}=1}^{m} \cdots \sum_{i_{v}=1}^{m}\left(x_{n i_{1}} x_{n-1, i_{2}} \cdots x_{n-v+1, i_{v}}\right) \times E\left[\left(Y_{1}+Y_{2}+\cdots+Y_{m}\right)\left(Y_{1}^{n_{1}(\mathbf{i})} Y_{2}^{n_{2}(\mathbf{i})} \cdots Y_{m}^{\left.n_{m}(\mathbf{i})\right]}\right\}^{-1}\right.\right. \tag{18}
\end{equation*}
$$

where $n_{j}(\mathbf{i})$ is the number of $y_{j}^{\prime} s$ in the sequence $y_{i_{1}}, y_{y_{2}} \cdots y_{i_{v}}$ for $j=1,2, \cdots, m ; 0 \leq n_{j}(\mathbf{i}) \leq v$ and $\sum_{j=1}^{m} n_{j}(\mathbf{i})=v$.
The Multivariate normal distribution $N(\mu, k)$ is of special form $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m}\right)$ and $K=\operatorname{diag}\left(\sigma_{1}, \sigma_{1}, \cdots, \sigma_{m}\right)$ where $Y_{1}, Y_{2}, \cdots, Y_{m}$ are independent.

The joint moment-generating function $M(\tau)=M\left(\tau_{1}, \tau_{2}, \cdots \tau_{m}\right)$ of the Multivariate normal distribution is given by

$$
\begin{equation*}
M\left(\tau_{1}, \tau_{2}, \cdots, \tau_{m}\right)=e^{\mu^{t}+\frac{1}{2}\left(\tau_{1}, \tau_{2}, \cdots \tau_{m}\right)^{t} K\left(\tau_{1}, \tau_{2}, \cdots, \tau_{m}\right)} \tag{19}
\end{equation*}
$$

Let $M^{n_{1}, n_{2}, \cdots, n_{m}}\left(\tau_{1}, \tau_{2}, \cdots, \tau_{m}\right)$ denote the partial derivative $\frac{\partial^{n_{1}+n_{2}+\cdots n_{m}} M\left(\tau_{1}, \tau_{2}, \cdots, \tau_{m}\right)}{\partial \tau_{1}^{n_{1}} \partial \tau_{1}^{n_{1} \cdots \partial \tau_{m}^{n_{m}}}}$ and
$M^{n_{1}, n_{2}, \cdots, n_{m}}(0,0, \cdots, 0)$ will denote the value of the partial derivative evaluated at $\tau_{1}=\tau_{2}=\cdots=\tau_{m}=0$. It is known that

$$
\begin{equation*}
E\left[Y_{1}^{n_{1}} Y_{2}^{n_{2}} \cdots Y_{m}^{n_{m}}\right]=M^{n_{1}, n_{2}, \cdots n_{m}}(0,0, \cdots, 0) \tag{20}
\end{equation*}
$$

If n_{k} in (20) is increased by 1 , then we adopt the notation

$$
\begin{equation*}
E\left[Y_{1}^{n_{1}} \cdots Y_{k}^{n_{k}+1} \cdots Y_{m}^{n_{m}}\right]=M^{n_{1}, n_{2}, \cdots, n_{k}+1, \cdots n_{m}}(0,0, \cdots, 0) \tag{21}
\end{equation*}
$$

for $k=1,2, \cdots, m$.

Constant Rebalanced Portfolio

A constant-rebalanced portfolio is a portfolio $\mathbf{b}=\left(b_{i}\right)$ that is constant over the trading days and the wealth at the end of n trading days is

$$
\begin{equation*}
S\left(\mathbf{x}^{n}\right)=\prod_{i=1}^{n} \mathbf{b}^{t} \mathbf{x}_{n} \tag{22}
\end{equation*}
$$

SELECTED PARAMETERS FOR UNIVERSAL PORTFOLIOS

The above two finite-order universal portfolios are studied on 10 most active stock-price data selected from the Kuala Lumpur Stock Exchange, which described in Introduction section. Every three stock data are generated from the 10 stocks data by using combination. In [6] and [7], good performances are obtained by order one Multinomial generated universal portfolio and order one Multivariate Normal generated universal portfolio, with the wealth achieved outperform the Diriclet universal portfolio. Therefore, only order one of the proposed two universal portfolio strategies are used for the data analysis.

Parameters of Finite Order Multinomial Universal Portfolio

Ten set of parameters $\left(p_{1}, p_{2}, N\right)$ are used for selection of good performances, they are $(0.8,0.001,600)$, $(0.001,0.8,600),(0.5,0.5,600),(0.9,0.1,600),(0.1,0.9,600),(0.8,0.001,50),(0.001,0.8,50),(0.05,0.95,99)$, $(0.95,0.05,99),(0.9,0.004,10)$. In [6], parameter $(0.8,0.001,600)$ was performed well when ran on three selected stocks from KLSE. Therefore, this parameters are chosen for the analysis. The other nine set of parameters are formed by permutation of $(0.8,0.001,600)$.

Parameters of Finite Order Multivariate Normal Universal Portfolio

In [7], good performances obtained by order one universal portfolio generated by Multivariate Normal Distribution with the set of parameters $\left(\mu_{1}, \mu_{2}, \mu_{3}, \sigma\right)=(7.1,0.8,0.2,1.0)$. Therefore, order one of Multivariate Normal generated universal portfolio is studied and the ten sets of parameters are selected varying among (7.1,0.8,0.2,1.0), i.e. $(7.1,0.8,0.2,1.0),(0.2,0.8,7.1,1.0),(0.8,7.1,0.2,1.0),(7.1,0.2,0.8,1.0),(0.8,0.2,7.1,1.0),(0.2,7.1,0.8,1.0)$, (8.1,9.1,0.1,2.0), (0.2,8.1,9.1,2.0), (8.1,0.2,9.1,2.0), (9,0.1,0.1,2.0).

TABLE 2. Average wealths obtained by Multinomial Generated Universal Portfolio better than CRP

Strategies	Duration	Average Wealth	Average Standard Deviation
Multinomial [0.8, 0.001, 50]	Jan 2015 to Dec 2015	1.872272	0.144625964
Multinomial $[0.8,0.001,600]$	Jan 2015 to Dec 2015	1.872129	0.1446316
Multinomial $[0.9,0.004,10]$	Jan 2015 to Dec 2015	2.0260995	0.083495876
Multinomial [0.9, 0.1, 600]	Jan 2015 to Dec 2015	2.021586	0.078432284
Multinomial [0.95, 0.05, 99]	Jan 2015 to Dec 2015	2.105049	0.047998408
Multinomial [0.8, 0.001, 50]	Jan 2014 to Dec 2015	6.24551	1.852848869
Multinomial [0.8, 0.001, 600]	Jan 2014 to Dec 2015	6.2445335	1.853016454
Multinomial [0.9, 0.004, 10]	Jan 2014 to Dec 2015	7.3133625	1.162690731
Multinomial $[0.9,0.1,600]$	Jan 2014 to Dec 2015	7.3025065	1.205954352
Multinomial [0.95, 0.05, 99]	Jan 2014 to Dec 2015	7.9577425	0.708231788
Multinomial [0.9, 0.004, 10]	Jan 2013 to Dec 2015	30.06651151	8.336130634
Multinomial [0.9,0.1, 600]	Jan 2013 to Dec 2015	30.0945315	8.537531616
Multinomial [0.95, 0.05, 99]	Jan 2013 to Dec 201	33.7422785	4.745774739

RESULT AND DISCUSSION

The CRP wealth is a benchmark measurement for good performance. A comparison can be made with the wealth obtained by CRP and the wealths achieved by the universal portfolios generated by Multinomial distribution and Multivariate Normal distribution with the selected parametric vector stated in previous sections. Every one year inverval starting from year 2000 to year 2015 of the available stock data listed in Table 1 are used for study. At least 20 percent of the wealths achieved by proposed universal portfolio performed better than CRP are obtained for analysis. The good performance of the parameter is observed.

The average wealths and standard deviation obtained by Multinomial generated universal portfolio are shown in Tables 2, 3 and 4. Good performance is observed for selected parameters $(0.9,0.004,10),(0.9,0.1,600)$ and (0.95 , $0.05,99$) for period January 2004 to December 2015. The good performance parameter with higher average wealth 748.318 is $(0.95,0.05,99)$.

The average wealth and standard deviation obtained by the Multivariate Normal generated universal portfolio are shown in Tables 5, 6 and 7. Wealth obtained higher than CRP is observed for selected parametric vectors ($7.1,0.2,0.8,1.0)$, ($7.1,0.8,0.2,1.0$) and ($9.0,0.1,0.1,2.0$) for period January 2004 to December 2015. The higher average wealth with the parameter $(9.0,0.1,0.1,2.0)$.

TABLE 3. Average wealths obtained by Multinomial Generated Universal Portfolio better than CRP.

Strategies	Duration	Average Wealth	Average Standard Deviation
Multinomial [0.8, 0.001, 50]	Jan 2008 to Dec 2015	158.612327	97.71612695
Multinomial $[0.8,0.001,600]$	Jan 2008 to Dec 2015	158.587814	97.72132277
Multinomial [0.9, 0.004, 10]	Jan 2008 to Dec 2015	237.065062	74.75428805
Multinomial [0.9, 0.1, 600]	Jan 2008 to Dec 2015	238.6583255	77.68982841
Multinomial [0.95, 0.05, 99]	Jan 2008 to Dec 2015	296.497761	48.91055484
Multinomial [0.8, 0.001, 50]	Jan 2007 to Dec 2015	132.2665145	75.33927112
Multinomial [0.8, 0.001, 600]	Jan 2007 to Dec 2015	132.2201705	75.31942405
Multinomial [0.9,0.004, 10]	Jan 2007 to Dec 2015	204.8146685	61.20016333
Multinomial [0.9,0.1, 600]	Jan 2007 to Dec 2015	204.964026	62.10088514
Multinomial [0.95, 0.05, 99]	Jan 2007 to Dec 2015	258.1299895	41.37791389
Multinomial [0.8, 0.001, 50]	Jan 2006 to Dec 2015	178.6115835	113.2260044
Multinomial [0.8,0.001, 600]	Jan 2006 to Dec 2015	178.537211	113.2070136
Multinomial [0.9,0.004, 10]	Jan 2006 to Dec 2015	277.5363855	92.07861702
Multinomial [0.9,0.1,600]	Jan 2006 to Dec 2015	274.7625725	91.26704653
Multinomial [0.95, 0.05, 99]	Jan 2006 to Dec 2015	347.7052635	58.89452853

TABLE 4. Average wealth obtained by Multinomial Generated Universal Portfolio better than CRP.

Strategies	Duration	Average Wealth	Average Standard Deviation
Multinomial [0.8, 0.001, 50]	Jan 2005 to Dec 2015	239.105569	167.9310497
Multinomial $[0.8,0.001,600]$	Jan 2005 to Dec 2015	239.00653	167.8962275
Multinomial [0.9, 0.004, 10]	Jan 2005 to Dec 2015	380.6836375	141.8727569
Multinomial [0.9, 0.1, 600]	Jan 2005 to Dec 2015	379.5841465	142.4877631
Multinomial [0.95, 0.05, 99]	Jan 2005 to Dec 2015	487.8792055	95.32278617
Multinomial [0.8, 0.001, 50]	Jan 2004 to Dec 2015	400.2781995	212.1060772
Multinomial [0.8, 0.001, 600]	Jan 2004 to Dec 2015	400.128036	212.0530265
Multinomial [0.9, 0.004, 10]	Jan 2004 to Dec 2015	604.2257875	157.7730287
Multinomial [0.9, 0.1, 600]	Jan 2004 to Dec 2015	602.6234155	157.7730287
Multinomial [0.95, 0.05, 99]	Jan 2004 to Dec 2015	748.3181105	102.8328358
Multinomial [0.001, 0.8, 50]	Jan 2003 to Dec 2015	32.215131	11.89520483
Multinomial [0.001, 0.8, 600]	Jan 2003 to Dec 2015	32.187138	11.91306069
Multinomial [0.001, 0.8,50]	Jan 2001 to Dec 2015	24.7398855	0.16061577
Multinomial [0.001, 0.8, 600]	Jan 2001 to Dec 2015	24.730969	0.160571222

TABLE 5. Average wealths obtained by Multivariate Normal Generated Universal Portfolio better than CRP.

Strategies	Duration	Average Wealth	Average Standard Deviation
MultivariateNormal [7.1, $0.2,0.8,1.0]$	Jan 2015 to Dec 2015	1.955066	0.09180933
Multivariate Normal [7.1, 0.8, 0.2, 1.0]	Jan 2015 to Dec 2015	1.956286	0.081379505
Multivariate Normal [9.0, 0.1, 0.1, 2.0]	Jan 2015 to Dec 2015	2.0877165	0.041910926
Multivariate Normal [7.1, 0.2, 0.8, 1.0]	Jan 2014 to Dec 2015	6.742861	1.501959857
Multivariate Normal [7.1, 0.8, 0.2, 1.0]	Jan 2014 to Dec 2015	6.69516	1.395113194
Multivariate Normal [9.0, 0.1, 0.1, 2.0]	Jan 2014 to Dec 2015	7.770994	0.763040342
Multivariate Normal [7.1, 0.2, 0.8, 1.0]	Jan 2013 to Dec 2015	185.063506	72.81175258
multivariate Normal [7.1, $0.8,0.2,1.0]$	Jan 2013 to Dec 2015	193.523848	85.71626608
Multivariate Normal[9.0, 0.1, 0.1, 2.0]	Jan 2013 to Dec 2015	276.3518625	51.95913896
Multivariate Normal [7.1, 0.2, 0.8, 1.0]	Jan 2008 to Dec 2015	27.2618865	9.966086718
multivariate Normal [7.1, $0.8,0.2,1.0]$	Jan 2008 to Dec 2015	26.586557	8.681444109
Multivariate Normal [9.0, 0.1, 0.1, 2.0]	Jan 2008 to Dec 2015	32.4116065	5.123314606

TABLE 6. Average wealths obtained by Multivariate Normal Generated Universal Portfolio better than CRP.

Strategies	Duration	Average Wealth	Average Standard Deviation
Multivariate Normal [7.1,0.2,0.8, 1.0]	Jan 2007 to Dec 2015	164.975529	69.01928153
multivariate Normal [7.1, 0.8,0.2, 1.0]	Jan 2007 to Dec 2015	161.813746	64.6768412
Multivariate Normal [9.0, 0.1,0.1,2.0]	Jan 2007 to Dec 2015	240.5946675	45.23218466
Multivariate Normal [7.1,0.2,0.8, 1.0]	Jan 2006 to Dec 2015	225.052084	98.65878373
multivariate Normal [7.1, 0.8, 0.2, 1.0]	Jan 2006 to Dec 2015	214.1665545	89.89713179
Multivariate Normal [9.0,0.1,0.1,2.0]	Jan 2006 to Dec 2015	327.6703685	65.94573513
Multivariate Normal [7.1,0.2,0.8,1.0]	Jan 2005 to Dec 2015	313.443567	154.3113924
multivariate Normal [7.1,0.8,0.2,1.0]	Jan 2005 to Dec 2015	310.560472	154.978443
Multivariate Normal [9.0,0.1,0.1,2.0]	Jan 2005 to Dec 2015	467.2951875	101.9507625

TABLE 7. Average wealths obtained by Multivariate Normal Generated Universal Portfolio better than CRP.

Strategies	Duration	Average Wealth	Average Standard Deviation
Multivariate Normal [7.1, 0.2, 0.8, 1.0]	Jan 2004 to Dec 2015	490.154204	183.1714692
multivariate Normal [7.1, 0.8,0.2, 1.0]	Jan 2004 to Dec 2015	471.429849	159.3962751
Multivariate Normal [9.0, 0.1, 0.1,2.0]	Jan 2004 to Dec 2015	701.0537485	110.2752124
Multivariate Normal [0.2, 0.8, 7.1, 1.0]	Jan 2003 to Dec 2015	44.052089	15.0078507
multivariate Normal [0.8, 0.2,7.1, 1.0]	Jan 2003 to Dec 2015	39.6614195	8.585701144
Multivariate Normal [0.2, 8.1, 9.1,2.0]	Jan 2001 to Dec 2015	25.8827735	1.301132339
Multivariate Normal [0.2, 0.8, 7.1,1.0]	Jan 2000 to Dec 2015	17.940328	7.129771817
Multivariate Normal [0.2, 8.1,9.1,2.0]	Jan 2000 to Dec 2015	14.691917	4.566167495
Multivariate Normal [0.8, 0.2,7.1, 1.0]	Jan 2000 to Dec 2015	17.200072	6.209487897

REFERENCES

[1] T. M. Cover, Math. Finance 1, 1-29 (1991).
[2] T. M. Cover, and E. Ordentlich, IEEE Trans. Inform. Theory 42, 348-363 (1996).
[3] C. P. Tan, "Performance Bounds for the Distribution Generated Universal Portfolio," in Proceedings of the 59th World Statistics Congress of the International Statistical Institute (2013), pp. 5327-5332.
[4] H. Capital, Harimau capital. URL: http://www.harimaucapital.com (Dec 2015).
[5] Yahoo, Yahoo! finance. URL: http://finance.yahoo.com (Jan 2016).
[6] C. P. Tan, and S. T. Pang, "The Finite and Moving Order Multinomial Universal Portfolio," in 2012 iCAST Contemporary Mathematics, Mathematical Physics and Their Application. Journal of Physics, Conference Series 435, (Institute of Physics, UK, Bristol, 2013), 012039.
[7] C. P. Tan, and S. T. Pang, "Empirical performance of Multivariate Normal Universal Portfolio," in Proceedings of the 3rd International Conference on Mathematical Sciences, (American Institute of Physics, Melville, NY, 2013), vol. AIP Conference Proceedings.

